Coverability and Termination in Recursive Petri Nets

.

Petri Nets 2019

Alain Finkel, Serge Haddad, Igor Khmelnitsky

Petri nets

Petri nets

Hardness of modeling:

- Exceptions
- Faults
- Interrupts

Petri nets

Hardness of modeling:

- Exceptions
- Faults
- Interrupts

Expressiveness: CFL ⊈ PNL ⊈ CFL.

Recursive Petri nets

Introduced in [EH96] (around 100 citations).

Modeling:

- Interrupts
- Faults
- Exceptions

Expressiveness: $CFL \subsetneq RPNL$.

Recursive Petri nets

Introduced in [EH96] (around 100 citations).

Modeling:

- Interrupts
- Faults
- Exceptions
- Expressiveness: $CFL \subsetneq RPNL$.

Decidability:

- Reachability
- Boundedness
- Termination

Related work

Related work

PN+Stack BVASS

Related work

	PN+Stack	BVASS
Reachability	TOWER-hard	TOWER-hard
Coverability	TOWER-hard	2-EXPTIME-complete
Boundedness	Decidable	2-EXPTIME-complete
Termination	Decidable	?

Outline

1. Introduction

2. Recursive Petri nets

- Expressiveness and order
 3.1 Order
 3.2 Language
- 4. Complexity
 - 4.1 Coverability
 - 4.2 Termination
- 5. Conclusion and perspectives

A Petri net

A marking p₁

A Petri net

A marking p₁

A Petri net

A Petri net

Abstract transitions

A marking

Abstract transitions

A marking

A Recursive Petri Net, consists of:

A Recursive Petri Net, consists of:

- $P = \{p_1, p_2, p_3\}$
- $T = T_{el} \uplus T_{ab} = \{t_1, t_2\} \uplus \{t_a\}$
- W⁻ and W⁺ incidence matrices:
 W⁻(t₁) = p₁, W⁺(t₁) = 2p₂
- $\Omega: T_{ab} \to \mathbb{N}^p$ starting markings: $\Omega(t_a) = p_1 + p_2$
- \mathscr{F} final markings: $\mathscr{F} = \{p_3\}$

 $\mathcal{F}=\{p_3\}$

A Recursive Petri Net, consists of:

- $P = \{p_1, p_2, p_3\}$
- $T = T_{el} \uplus T_{ab} = \{t_1, t_2\} \uplus \{t_a\}$
- W⁻ and W⁺ incidence matrices:
 W⁻(t₁) = p₁, W⁺(t₁) = 2p₂
- $\Omega: T_{ab} \to \mathbb{N}^p$ starting markings: $\Omega(t_a) = p_1 + p_2$
- \mathscr{F} final markings: $\mathscr{F} = \{p_3\}$

A Recursive Petri Net, consists of:

- $P = \{p_1, p_2, p_3\}$
- $T = T_{el} \uplus T_{ab} = \{t_1, t_2\} \uplus \{t_a\}$
- W^- and W^+ incidence matrices: $W^-(t_1) = p_1, W^+(t_1) = 2p_2$
- $\Omega: T_{ab} \to \mathbb{N}^p$ starting markings: $\Omega(t_a) = p_1 + p_2$
- \mathscr{F} final markings: $\mathscr{F} = \{p_3\}$

A Recursive Petri Net, consists of:

- $P = \{p_1, p_2, p_3\}$
- $T = T_{el} \uplus T_{ab} = \{t_1, t_2\} \uplus \{t_a\}$
- W⁻ and W⁺ incidence matrices:
 W⁻(t₁) = p₁, W⁺(t₁) = 2p₂
- $\Omega: T_{ab} \to \mathbb{N}^p$ starting markings: $\Omega(t_a) = p_1 + p_2$
- \mathscr{F} final markings: $\mathscr{F} = \{p_3\}$

A Recursive Petri Net, consists of:

- $P = \{p_1, p_2, p_3\}$
- $T = T_{el} \uplus T_{ab} = \{t_1, t_2\} \uplus \{t_a\}$
- W⁻ and W⁺ incidence matrices:
 W⁻(t₁) = p₁, W⁺(t₁) = 2p₂
- $\Omega: T_{ab} \to \mathbb{N}^p$ starting markings: $\Omega(t_a) = p_1 + p_2$
- \mathscr{F} final markings: $\mathscr{F} = \{p_3\}$

A state s of an RPN is a directed labeled tree,

where:

A state *s* of an RPN is a directed labeled tree, where:

• V a set of threads (vertices)

 $V = \{v_1, v_2, v_3\}$

- $M: V \rightarrow \mathbb{N}^{P}$ a marking of the threads $M(v_1) = 0, M(v_2) = p_3, M(v_3) = p_2$
- $E \subseteq V \times V$ a set of edges $E = \{(v_1, v_2), (v_1, v_3)\}$
- $\Lambda : E \to T_{ab}$, an edge labeling $\Lambda(v_1, v_2) = t_a, \Lambda(v_1, v_3) = t_a$

A state *s* of an RPN is a directed labeled tree, where:

- V a set of threads (vertices)
 V = {v₁, v₂, v₃}
- $M: V \rightarrow \mathbb{N}^{P}$ a marking of the threads $M(v_{1}) = 0, M(v_{2}) = p_{3}, M(v_{3}) = p_{2}$
- $E \subseteq V \times V$ a set of edges $E = \{(v_1, v_2), (v_1, v_3)\}$
- $\Lambda : E \to T_{ab}$, an edge labeling $\Lambda(v_1, v_2) = t_a, \Lambda(v_1, v_3) = t_a$

A state *s* of an RPN is a directed labeled tree, where:

• V a set of threads (vertices)

 $V = \{v_1, v_2, v_3\}$

- $M: V \rightarrow \mathbb{N}^{P}$ a marking of the threads $M(v_1) = 0, M(v_2) = p_3, M(v_3) = p_2$
- $E \subseteq V \times V$ a set of edges $E = \{(v_1, v_2), (v_1, v_3)\}$
- $\Lambda : E \to T_{ab}$, an edge labeling $\Lambda(v_1, v_2) = t_a, \Lambda(v_1, v_3) = t_a$

A State of an RPN

A state *s* of an RPN is a directed labeled tree, where:

• V a set of threads (vertices)

 $V = \{v_1, v_2, v_3\}$

- $M: V \rightarrow \mathbb{N}^{P}$ a marking of the threads $M(v_1) = 0, M(v_2) = p_3, M(v_3) = p_2$
- $E \subseteq V \times V$ a set of edges $E = \{(v_1, v_2), (v_1, v_3)\}$
- $\Lambda : E \to T_{ab}$, an edge labeling $\Lambda(v_1, v_2) = t_a, \Lambda(v_1, v_3) = t_a$

A State of an RPN

A state *s* of an RPN is a directed labeled tree, where:

• V a set of threads (vertices)

 $V = \{v_1, v_2, v_3\}$

- $M: V \rightarrow \mathbb{N}^{P}$ a marking of the threads $M(v_1) = 0, M(v_2) = p_3, M(v_3) = p_2$
- $E \subseteq V \times V$ a set of edges $E = \{(v_1, v_2), (v_1, v_3)\}$
- $\Lambda: E \to T_{ab}$, an edge labeling $\Lambda(v_1, v_2) = t_a, \Lambda(v_1, v_3) = t_a$

Three types of transitions:

Three types of transitions: 1. Elementary transition t_a v_1 0 t_a v_2 p_3 p_2

Three types of transitions: 1. Elementary transition $v_1 \circ (v_3, t_2)$

ta

V3

 p_2

ta

 V_2

p₃

Three types of transitions:

 p_3 $\mathscr{F} = \{p_3\}$

Three types of transitions:

- 1. Elementary transition
- 2. Abstract transition $v_1 \mathbf{0}$

Three types of transitions:

- 1. Elementary transition
- 2. Abstract transition $\begin{pmatrix} v_1 \\ 0 \end{pmatrix} \begin{pmatrix} v_2 \\ t \end{pmatrix}$

Three types of transitions:

1. Elementary transition

Three types of transitions:

- 1. Elementary transition
- 2. Abstract transition
- 3. Cut transition

Three types of transitions:

- 1. Elementary transition
- 2. Abstract transition

Three types of transitions:

- 1. Elementary transition
- 2. Abstract transition

 p_3

ta

V3

 \mathbf{p}_2

Three types of transitions:

- 1. Elementary transition
- 2. Abstract transition
- 3. Cut transition

A firing sequence:

$$s_0 \xrightarrow{(v_1,t_1)} s_1 \xrightarrow{(v_2,t_2)} \cdots s_{n-1} \xrightarrow{(v_n,t_n)} s_n$$

Or equivalently $s_0 \xrightarrow{\sigma} s_n$ for $\sigma = (v_1, t_1)(v_2, t_2) \dots (v_n, t_n)$.

Order

Order How do we order states?

Order How do we order states?

Expressiveness

Order How do we order states?

Expressiveness How expressive are RPN coverability languages?

Order How do we order states?

Expressiveness How expressive are RPN coverability languages?

Complexity 1. Coverability problem?

Order How do we order states?

Expressiveness How expressive are RPN coverability languages?

Complexity 1. Coverability problem? 2. Termination problem?

Outline

- 1. Introduction
- 2. Recursive Petri nets
- 3. Expressiveness and order
 - 3.1 Order
 - 3.2 Language
- 4. Complexity
 - 4.1 Coverability
 - 4.2 Termination
- 5. Conclusion and perspectives

1. An injective tree homomorphism, i.e. f(prd(v)) = prd(f(v)), $f : V_1 \rightarrow V_2$.

- 1. An injective tree homomorphism, i.e. f(prd(v)) = prd(f(v)), $f : V_1 \rightarrow V_2$.
- 2. For every $v \in V_1$, $M_1(v) \le M_2(f(v))$.

 $W^+(t_1) = p_1 \le 2p_1 = W^+(t_2)$

- 1. An injective tree homomorphism, i.e. f(prd(v)) = prd(f(v)), $f : V_1 \rightarrow V_2$.
- 2. For every $v \in V_1$, $M_1(v) \le M_2(f(v))$.
- 3. For every $e \in E_1$, $W^+(\Lambda_1(e)) \le W^+(\Lambda_2(f(e)))$.

• ∠ is a quasi order

- \preceq is a quasi order \checkmark
- ≤ is strongly compatible, i.e:

- \preceq is a quasi order \checkmark
- ∠ is strongly compatible, i.e:

- ∠ is strongly compatible, i.e:

 $(f(v), t) \\ s_2 \xrightarrow{} s'_2$ $\begin{array}{cc} \mathbf{Y}\mathbf{I} & \mathbf{Y}\mathbf{I} \\ s_1 & \underbrace{(v, t)}_{s_1} & s_1' \end{array}$ ΥI

- \preceq is a quasi order \checkmark
- \preceq is strongly compatible \checkmark

- \preceq is a quasi order \checkmark
- \preceq is strongly compatible \checkmark
- ≤ is a wqo

- \preceq is a quasi order \checkmark
- \preceq is strongly compatible \checkmark
- ≤ is a wqo X

RPN coverability languages

RPN coverability languages

$$\mathscr{L}(\mathscr{N}, s_0, \mathsf{S}_{\mathsf{f}}) = \{\lambda(\sigma) \mid \exists s_0 \xrightarrow{\sigma} \mathsf{s} \succeq \mathsf{s}_{\mathsf{f}} \land \mathsf{s}_{\mathsf{f}} \in \mathsf{S}_{\mathsf{f}}\}$$

RPN coverability languages

$$\mathscr{L}(\mathscr{N}, s_0, \mathsf{S}_{\mathsf{f}}) = \{\lambda(\sigma) \mid \exists s_0 \xrightarrow{\sigma} s \succeq s_{\mathsf{f}} \land s_{\mathsf{f}} \in \mathsf{S}_{\mathsf{f}}\}$$

- *N* RPN
- s₀ initial state
- S_f finite set of states
- $\lambda : T^* \rightarrow \Sigma^*$ morphism function.

$$L_1 = \{ w \in \{ d, e \}^* \mid w = \widetilde{w} \}$$

$$L_1 = \{ w \in \{d, e\}^* \mid w = \widetilde{w} \}$$
$$L_2 = \{ a^m b^n c^p \mid m \ge n \ge p \}$$

Outline

- 1. Introduction
- 2. Recursive Petri nets
- Expressiveness and order
 3.1 Order
 3.2 Language
- 4. Complexity
 - 4.1 Coverability
 - 4.2 Termination

5. Conclusion and perspectives

Given an RPN and s_0 , s_f two states.

Given an RPN and s_0 , s_f two states.

$$\exists \sigma \ s_0 \xrightarrow{\sigma} s \succeq s_f ?$$

Given an RPN and s_0 , s_f two states.

$$\exists \sigma \ s_0 \xrightarrow{\sigma} s \succeq s_f ?$$

$$s_0 \xrightarrow{\sigma} s \succeq s_f$$

Given an RPN and s_0 , s_f two states.

$$\exists \sigma \ s_0 \xrightarrow{\sigma} s \succeq s_f ?$$

$$s_0 \xrightarrow{\sigma} s \succeq s_f$$
$$\Downarrow$$

Given an RPN and s_0 , s_f two states.

$$\exists \sigma \ s_0 \xrightarrow{\sigma} s \succeq s_f$$
?

$$s_0 \xrightarrow{\sigma} s \succeq s_f$$
$$\Downarrow$$
$$\exists \sigma' \text{ s.t. } s_0 \xrightarrow{\sigma'} s' \succeq s_f$$

Given an RPN and s_0 , s_f two states.

$$\exists \sigma \ s_0 \xrightarrow{\sigma} s \succeq s_f$$
?

Given an RPN and s_0 , s_f two states.

$$\exists \sigma \ s_0 \xrightarrow{\sigma} s \succeq s_f$$
?

Proposition:

$$s_0 \xrightarrow{\sigma} s \succeq s_f$$

$$\downarrow$$

$$\exists \sigma' \text{ s.t. } s_0 \xrightarrow{\sigma'} s' \succeq s_f$$
with $|\sigma'| \leq 2^{2^{cn\log n}}$.

From this proposition and Savitch's theorem, the coverability problem of *RPN* is EXPSPACE-complete.

 σ

Given an PN and m_0 , m_f two markings.

$$\exists \sigma \ m_0 \xrightarrow{\sigma} m \succeq m_f$$
?

 σ

Proposition: [Rac78]

From this proposition and Savitch's theorem, the coverability problem of *PN* is EXPSPACE-complete.

Assume $s_0 \xrightarrow{\sigma} s \succeq s_f$.

Assume $s_0 \xrightarrow{\sigma} s \succeq s_f$. There exists $s_0 \xrightarrow{\sigma'} s' \succeq s_f$ s.t.

Assume $s_0 \xrightarrow{\sigma} s \succeq s_f$. There exists $s_0 \xrightarrow{\sigma'} s' \succeq s_f$ s.t.

$$\sigma' = \sigma_1(v_1, \tau)\sigma_2(v_2, \tau) \dots \sigma_{\ell}(v_{\ell}, \tau)\sigma_{\ell+1}\sigma_{\ell+1}^{ab} \dots \sigma_k\sigma_k^{ab}$$

Where:

Assume $s_0 \xrightarrow{\sigma} s \succeq s_f$. There exists $s_0 \xrightarrow{\sigma'} s' \succeq s_f$ s.t.

$$\sigma' = \sigma_1(v_1, \tau)\sigma_2(v_2, \tau) \dots \sigma_{\ell}(v_{\ell}, \tau)\sigma_{\ell+1}\sigma_{\ell+1}^{ab} \dots \sigma_k\sigma_k^{ab}$$

Where:

1. σ_i is a covering sequence in $(\{v_i\} \times T_{el})^*$

Assume $s_0 \xrightarrow{\sigma} s \succeq s_f$. There exists $s_0 \xrightarrow{\sigma'} s' \succeq s_f$ s.t.

$$\sigma' = \sigma_1(v_1, \tau)\sigma_2(v_2, \tau) \dots \sigma_{\ell}(v_{\ell}, \tau)\sigma_{\ell+1}\sigma_{\ell+1}^{ab} \dots \sigma_k\sigma_k^{ab}$$

Where:

1. σ_i is a covering sequence in $(\{v_i\} \times T_{el})^*$

2. k ≤ 3n

Assume $s_0 \xrightarrow{\sigma} s \succeq s_f$. There exists $s_0 \xrightarrow{\sigma'} s' \succeq s_f$ s.t.

$$\sigma' = \sigma_1(v_1, \tau)\sigma_2(v_2, \tau) \dots \sigma_{\ell}(v_{\ell}, \tau)\sigma_{\ell+1}\sigma_{\ell+1}^{ab} \dots \sigma_k\sigma_k^{ab}$$

Where:

- 1. σ_i is a covering sequence in $(\{v_i\} \times T_{el})^*$
- 2. k ≤ 3n
- 3. $\sum_{i \le k} |\sigma_k^{ab}| \le 3n$

Assume $s_0 \xrightarrow{\sigma} s \succeq s_f$. There exists $s_0 \xrightarrow{\sigma'} s' \succeq s_f$ s.t.

$$\sigma' = \sigma_1(v_1, \tau)\sigma_2(v_2, \tau) \dots \sigma_{\ell}(v_{\ell}, \tau)\sigma_{\ell+1}\sigma_{\ell+1}^{ab} \dots \sigma_k\sigma_k^{ab}$$

Where:

- 1. σ_i is a covering sequence in $(\{v_i\} \times T_{el})^*$
- k ≤ 3n
- 3. $\sum_{i \le k} |\sigma_k^{ab}| \le 3n$

Applying Rackoff's proposition to each σ_i , we get $s_0 \xrightarrow{\sigma''} s'' \succeq s_f$, s.t. $|\sigma''| \le 2^{2^{cn \log n}}$.

Given an RPN and s_0 a state.

Given an RPN and s_0 a state.

$$\exists (v_i, t_i)_{i=0}^{\infty} \ s_0 \xrightarrow{(v_0, t_0)} s_1 \xrightarrow{(v_1, t_1)} \dots ?$$

Given an RPN and s_0 a state.

$$\exists (v_i, t_i)_{i=0}^{\infty} \ s_0 \xrightarrow{(v_0, t_0)} s_1 \xrightarrow{(v_1, t_1)} \dots ?$$

Theorem. The termination problem for RPN is EXPSPACE-complete.

Given an RPN and s_0 a state.

$$\exists (v_i, t_i)_{i=0}^{\infty} \ s_0 \xrightarrow{(v_0, t_0)} s_1 \xrightarrow{(v_1, t_1)} \dots ?$$

Theorem. The *termination problem* for *RPN* is EXPSPACE-complete. **Sketch of proof.**

Given an RPN and s_0 a state.

$$\exists (v_i, t_i)_{i=0}^{\infty} \ s_0 \xrightarrow{(v_0, t_0)} s_1 \xrightarrow{(v_1, t_1)} \dots ?$$

Theorem. The *termination problem* for *RPN* is EXPSPACE-complete. **Sketch of proof.** Two types of infinite sequences:

Given an RPN and s_0 a state.

$$\exists (v_i, t_i)_{i=0}^{\infty} \ s_0 \xrightarrow{(v_0, t_0)} s_1 \xrightarrow{(v_1, t_1)} \dots ?$$

Theorem. The *termination problem* for *RPN* is EXPSPACE-complete. **Sketch of proof.** Two types of infinite sequences:

• Deep : along states with unbounded depth.
Given an RPN and s_0 a state.

$$\exists (v_i, t_i)_{i=0}^{\infty} \ s_0 \xrightarrow{(v_0, t_0)} s_1 \xrightarrow{(v_1, t_1)} \dots ?$$

- Deep : along states with unbounded depth.
 - 1. Build an abstract graph in EXPSPACE (using RPN Coverability).

Given an RPN and s_0 a state.

$$\exists (v_i, t_i)_{i=0}^{\infty} \ s_0 \xrightarrow{(v_0, t_0)} s_1 \xrightarrow{(v_1, t_1)} \dots ?$$

- Deep : along states with unbounded depth.
 - 1. Build an abstract graph in EXPSPACE (using RPN Coverability).
 - 2. Check for a deep sequence in linear time.

Given an RPN and s_0 a state.

$$\exists (v_i, t_i)_{i=0}^{\infty} \ s_0 \xrightarrow{(v_0, t_0)} s_1 \xrightarrow{(v_1, t_1)} \dots ?$$

- Deep : along states with unbounded depth.
 - 1. Build an abstract graph in EXPSPACE (using RPN Coverability).
 - 2. Check for a deep sequence in linear time.
- Shallow : along states with bounded depth.

Given an RPN and s_0 a state.

$$\exists (v_i, t_i)_{i=0}^{\infty} \ s_0 \xrightarrow{(v_0, t_0)} s_1 \xrightarrow{(v_1, t_1)} \dots ?$$

- Deep : along states with unbounded depth.
 - 1. Build an abstract graph in EXPSPACE (using RPN Coverability).
 - 2. Check for a deep sequence in linear time.
- Shallow : along states with bounded depth. Reduced to small number of PN termination problems.

Outline

- 1. Introduction
- 2. Recursive Petri nets
- 3. Expressiveness and order
 - 3.1 Order
 - 3.2 Language
- 4. Complexity
 - 4.1 Coverability
 - 4.2 Termination
- 5. Conclusion and perspectives

• Expressiveness:

• Expressiveness:

- Cov-PNL + CFL \subsetneq Cov-RPNL

• Expressiveness:

- Cov-PNL + CFL \subsetneq Cov-RPNL
- Cov-RPNL ⊈ Reach-PNL ⊈ Cov-RPNL

- Expressiveness:
 - Cov-PNL + CFL \subsetneq Cov-RPNL
 - Cov-RPNL ⊈ Reach-PNL ⊈ Cov-RPNL
 - $\forall \mathcal{L} \in \text{RE } \exists L \in \text{Cov-RPNL}, R \in \text{RL} \text{ and } h, \text{ s.t. } \mathcal{L} = h(L \cap R)$

- Expressiveness:
 - Cov-PNL + CFL \subsetneq Cov-RPNL
 - Cov-RPNL ⊈ Reach-PNL ⊈ Cov-RPNL
 - $\forall \mathscr{L} \in RE \exists L \in Cov-RPNL, R \in RL and h, s.t. \mathscr{L} = h(L \cap R)$
- Complexity: Coverability and termination problems are EXPSPACE-complete.

• $w \in Cov-RPNL$?

- $w \in Cov-RPNL?$
- Complexity: Boundedness and Finiteness problems?

- $w \in Cov-RPNL?$
- Complexity: Boundedness and Finiteness problems?

- $w \in Cov-RPNL?$
- Complexity: Boundedness and Finiteness problems?

- $w \in Cov-RPNL?$
- Complexity: Boundedness and Finiteness problems?
- Cov-RPNL \subseteq Reach-RPNL?

Questions?

	PN+Stack	BVASS	RPN
Reachability	TOWER-hard	TOWER-hard	Decidable
Coverability	TOWER-hard	2-EXPTIME-complete	EXPSPACE-complete
Boundedness	Decidable	2-EXPTIME-complete	?
Termination	Decidable	?	EXPSPACE-complete

Bibliography

- [EH96] Amal E, Seghrouchni and Serge Haddad, A recursive model for distributed planning, ICMAS 1996, Kyoto, Japan, 1996, pp. 307–314.
- [Rac78] Charles Rackoff, The covering and boundedness problems for vector addition systems, Theoretical Computer Science 6 (1978), no. 2, 223 – 231.

Fault tolerant system

$$\mathscr{F} = \{p_{fault}\}$$