
Coverability and Termination in
Recursive Petri Nets

Petri Nets 2019
Alain Finkel, Serge Haddad, Igor Khmelnitsky

Petri nets

1/26

Petri nets

Hardness of modeling:

• Exceptions

• Faults

• Interrupts

Expressiveness: CFL 6⊆ PNL 6⊆ CFL.

1/26

Petri nets

Hardness of modeling:

• Exceptions

• Faults

• Interrupts

Expressiveness: CFL 6⊆ PNL 6⊆ CFL.

1/26

Recursive Petri nets

Introduced in [EH96] (around 100 citations).

Modeling:

• Interrupts

• Faults

• Exceptions

Expressiveness: CFL (RPNL.

2/26

Recursive Petri nets

Introduced in [EH96] (around 100 citations).

Modeling:

• Interrupts

• Faults

• Exceptions

Expressiveness: CFL (RPNL.

Decidability:

• Reachability

• Boundedness

• Termination

2/26

Related work

PN+Stack BVASS

Reachability TOWER-hard TOWER-hard
Coverability TOWER-hard 2-EXPTIME-complete
Boundedness Decidable 2-EXPTIME-complete
Termination Decidable ?

3/26

Related work

PN+Stack BVASS

Reachability TOWER-hard TOWER-hard
Coverability TOWER-hard 2-EXPTIME-complete
Boundedness Decidable 2-EXPTIME-complete
Termination Decidable ?

3/26

Related work

PN+Stack BVASS

Reachability TOWER-hard TOWER-hard
Coverability TOWER-hard 2-EXPTIME-complete
Boundedness Decidable 2-EXPTIME-complete
Termination Decidable ?

3/26

Outline

1. Introduction

2. Recursive Petri nets

3. Expressiveness and order
3.1 Order
3.2 Language

4. Complexity
4.1 Coverability
4.2 Termination

5. Conclusion and perspectives

4/26

From Petri Net to Recursive Petri Net

A Petri net
p1

p2

p3

t1
2

t2
2

ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2

F = {p3}

p1

A marking

5/26

From Petri Net to Recursive Petri Net

A Petri net
p1

p2

p3

t1
2

t2
2

ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2

F = {p3}

p1

A marking

5/26

From Petri Net to Recursive Petri Net

A Petri net
p1

p2

p3

t1
2

t2
2

ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2

F = {p3}

2p2

A marking

5/26

From Petri Net to Recursive Petri Net

A Petri net
p1

p2

p3

t1
2

t2
2

ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2

F = {p3}

2p2

A marking

5/26

From Petri Net to Recursive Petri Net

Abstract transitions
p1

p2

p3

t1
2

t2
2

ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2

F = {p3}

2p2

A marking

5/26

From Petri Net to Recursive Petri Net

Abstract transitions
p1

p2

p3

t1
2

t2
2

ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2

F = {p3}

2p2

A marking

5/26

From Petri Net to Recursive Petri Net
Abstract transitions

p1

p2

p3

t1
2

t2
2

ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2

F = {p3}

p1

p2

p3

t1

t2
2

ta

p1 + p2

F = {p3}

ta

p2

2p1 + p2

ta

A state

5/26

From Petri Net to Recursive Petri Net
Abstract transitions

p1

p2

p3

t1
2

t2
2

ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2

F = {p3}

p1

p2

p3

t1

t2
2

ta

p1 + p2

F = {p3}

ta

p2

2p1 + p2

ta

A state

5/26

From Petri Net to Recursive Petri Net
Abstract transitions

p1

p2p2

p3

t1
2

t2
2

ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2

F = {p3}

p1

p2

p3

t1

t2
2

ta

p1 + p2

F = {p3}

ta

p2

2p1 + p2

ta

A state

5/26

From Petri Net to Recursive Petri Net
Abstract transitions

p1

p2

p3

t1
2

t2
2

ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2

F = {p3}

p1

p2

p3

t1

t2
2

ta

p1 + p2

F = {p3}

ta

p1

p2

p3

t1

t2
2

ta

p1 + p2

F = {p3}

ta

0

2p1 + p2 p1 + p2

ta ta

A state

5/26

From Petri Net to Recursive Petri Net
Abstract transitions

p1

p2

p3

t1
2

t2
2

ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2

F = {p3}

p1

p2

p3

t1

t2
2

ta

p1 + p2

F = {p3}

ta

p1

p2

p3

t1

t2
2

ta

p1 + p2

F = {p3}

ta

0

2p1 + p2 p1 + p2

ta ta

A state

5/26

From Petri Net to Recursive Petri Net
Abstract transitions

p1

p2

p3

t1
2

t2
2

ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2

F = {p3}

p1

p2

p3

t1

t2
2

t2
2

ta

p1 + p2

F = {p3}

ta

p1

p2

p3

t1

t2
2

ta

p1 + p2

F = {p3}

ta

0

2p1 + p2 p1 + p2

ta ta

A state

5/26

From Petri Net to Recursive Petri Net
Abstract transitions

p1

p2

p3

t1
2

t2
2

ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2

F = {p3}

p1

p2

p3

t1

t2
2

ta

p1 + p2

F = {p3}

ta

p1

p2

p3

t1

t2
2

ta

p1 + p2

F = {p3}

ta

0

p1 + 2p3 p1 + p2

ta ta

A state

5/26

From Petri Net to Recursive Petri Net
Cut transitions

p1

p2

p3

t1
2

t2
2

ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2

F = {p3}

p1

p2

p3

t1

t2
2

ta

p1 + p2

F = {p3}F = {p3}

ta

p1

p2

p3

t1

t2
2

ta

p1 + p2

F = {p3}

ta

0

p1 + 2p3 p1 + p2

ta ta

A state

5/26

From Petri Net to Recursive Petri Net
Cut transitions

p1

p2

p3

t1
2

t2
2

ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2

F = {p3}

p1

p2

p3

t1

t2
2

ta

p1 + p2

F = {p3}

ta

p1

p2

p3

t1

t2
2

ta

p1 + p2

F = {p3}

ta

0

p1 + 2p3 p1 + p2

ta ta

A state

5/26

From Petri Net to Recursive Petri Net
Cut transitions

p1

p2

p3

t1
2

t2
2

ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2
ta

p1 + p2

F = {p3}

F = {p3}

p1

p2

p3

t1

t2
2

ta

p1 + p2

F = {p3}

ta

p3

2p3 + p1 p1 + p2

ta

A state

5/26

Syntax

A Recursive Petri Net, consists of:

• P = {p1, p2, p3}

• T = Tel] Tab = {t1, t2}] {ta}

• W− andW+ incidence matrices:
W−(t1) = p1,W+(t1) = 2p2

• Ω : Tab→ NP starting markings:
Ω(ta) = p1 + p2

• F final markings:
F = {p3}

p1

p2

p3

t1
2

t2
2

ta

p1 + p2p1 + p2

F = {p3}

6/26

Syntax

A Recursive Petri Net, consists of:

• P = {p1, p2, p3}

• T = Tel] Tab = {t1, t2}] {ta}

• W− andW+ incidence matrices:
W−(t1) = p1,W+(t1) = 2p2

• Ω : Tab→ NP starting markings:
Ω(ta) = p1 + p2

• F final markings:
F = {p3}

p1

p2

p3

t1
2

t2
2

ta

p1 + p2p1 + p2

F = {p3}

6/26

Syntax

A Recursive Petri Net, consists of:

• P = {p1, p2, p3}

• T = Tel] Tab = {t1, t2}] {ta}

• W− andW+ incidence matrices:
W−(t1) = p1,W+(t1) = 2p2

• Ω : Tab→ NP starting markings:
Ω(ta) = p1 + p2

• F final markings:
F = {p3}

p1

p2

p3

t1
2

t2
2

ta

p1 + p2p1 + p2

F = {p3}

6/26

Syntax

A Recursive Petri Net, consists of:

• P = {p1, p2, p3}

• T = Tel] Tab = {t1, t2}] {ta}

• W− andW+ incidence matrices:
W−(t1) = p1,W+(t1) = 2p2

• Ω : Tab→ NP starting markings:
Ω(ta) = p1 + p2

• F final markings:
F = {p3}

p1

p2

p3

t1
2

t2
2

ta

p1 + p2

F = {p3}

6/26

Syntax

A Recursive Petri Net, consists of:

• P = {p1, p2, p3}

• T = Tel] Tab = {t1, t2}] {ta}

• W− andW+ incidence matrices:
W−(t1) = p1,W+(t1) = 2p2

• Ω : Tab→ NP starting markings:
Ω(ta) = p1 + p2

• F final markings:
F = {p3}

p1

p2

p3

t1
2

t2
2

ta

p1 + p2

F = {p3}

6/26

Syntax

A Recursive Petri Net, consists of:

• P = {p1, p2, p3}

• T = Tel] Tab = {t1, t2}] {ta}

• W− andW+ incidence matrices:
W−(t1) = p1,W+(t1) = 2p2

• Ω : Tab→ NP starting markings:
Ω(ta) = p1 + p2

• F final markings:
F = {p3}

p1

p2

p3

t1
2

t2
2

ta

p1 + p2

F = {p3}

6/26

A State of an RPN
A state s of an RPN is a directed labeled tree,
where:

• V a set of threads (vertices)
V = {v1, v2, v3}

• M : V → NP a marking of the threads
M(v1) = 0,M(v2) = p3,M(v3) = p2

• E ⊆ V × V a set of edges
E = {(v1, v2), (v1, v3)}

• Λ : E→ Tab, an edge labeling
Λ (v1, v2) = ta,Λ (v1, v3) = ta

v1 0

v2

p3

v3

p2

ta ta

7/26

A State of an RPN
A state s of an RPN is a directed labeled tree,
where:

• V a set of threads (vertices)
V = {v1, v2, v3}

• M : V → NP a marking of the threads
M(v1) = 0,M(v2) = p3,M(v3) = p2

• E ⊆ V × V a set of edges
E = {(v1, v2), (v1, v3)}

• Λ : E→ Tab, an edge labeling
Λ (v1, v2) = ta,Λ (v1, v3) = ta

v1 0

v2

p3

v3

p2

ta ta

7/26

A State of an RPN
A state s of an RPN is a directed labeled tree,
where:

• V a set of threads (vertices)
V = {v1, v2, v3}

• M : V → NP a marking of the threads
M(v1) = 0,M(v2) = p3,M(v3) = p2

• E ⊆ V × V a set of edges
E = {(v1, v2), (v1, v3)}

• Λ : E→ Tab, an edge labeling
Λ (v1, v2) = ta,Λ (v1, v3) = ta

v1 0

v2

p3

v3

p2

ta ta

7/26

A State of an RPN
A state s of an RPN is a directed labeled tree,
where:

• V a set of threads (vertices)
V = {v1, v2, v3}

• M : V → NP a marking of the threads
M(v1) = 0,M(v2) = p3,M(v3) = p2

• E ⊆ V × V a set of edges
E = {(v1, v2), (v1, v3)}

• Λ : E→ Tab, an edge labeling
Λ (v1, v2) = ta,Λ (v1, v3) = ta

v1 0

v2

p3

v3

p2

ta ta

7/26

A State of an RPN
A state s of an RPN is a directed labeled tree,
where:

• V a set of threads (vertices)
V = {v1, v2, v3}

• M : V → NP a marking of the threads
M(v1) = 0,M(v2) = p3,M(v3) = p2

• E ⊆ V × V a set of edges
E = {(v1, v2), (v1, v3)}

• Λ : E→ Tab, an edge labeling
Λ (v1, v2) = ta,Λ (v1, v3) = ta

v1 0

v2

p3

v3

p2

ta ta

7/26

A State of an RPN
A state s of an RPN is a directed labeled tree,
where:

• V a set of threads (vertices)
V = {v1, v2, v3}

• M : V → NP a marking of the threads
M(v1) = 0,M(v2) = p3,M(v3) = p2

• E ⊆ V × V a set of edges
E = {(v1, v2), (v1, v3)}

• Λ : E→ Tab, an edge labeling
Λ (v1, v2) = ta,Λ (v1, v3) = ta

v1 0

v2

p3

v3

p2

ta ta

7/26

Firing in an RPN

Three types of transitions:
p1

p2

p3

t1

t2 ta

p1 + p2

F = {p3}

8/26

Firing in an RPN

Three types of transitions:
1. Elementary transition

v1 0

v2

p3

v3

p2

ta ta

p1

p2

p3

t1

t2 ta

p1 + p2

F = {p3}

8/26

Firing in an RPN

Three types of transitions:
1. Elementary transition

v1 0

v2

p3

v3

p2

ta ta
(v3, t2)

p1

p2

p3

t1

t2 ta

p1 + p2

F = {p3}

8/26

Firing in an RPN

Three types of transitions:
1. Elementary transition

v1 0

v2

p3

v3

p2

ta ta
v1 0

v2

p3

v3

p3

ta ta
(v3, t2)

p1

p2

p3

t1

t2 ta

p1 + p2

F = {p3}

8/26

Firing in an RPN

Three types of transitions:
1. Elementary transition
2. Abstract transition

v1 0

v2

p3

v3

p2

ta ta

v4
p2

p1

p2

p3

t1

t2 ta

p1 + p2

F = {p3}

8/26

Firing in an RPN

Three types of transitions:
1. Elementary transition
2. Abstract transition

v1 0

v2

p3

v3

p2

ta ta

v4
p2

(v3, ta)

p1

p2

p3

t1

t2 ta

p1 + p2

F = {p3}

8/26

Firing in an RPN

Three types of transitions:
1. Elementary transition
2. Abstract transition

v1 0

v2

p3

v3

p2

ta ta
v1 0

v2

p3

v3

0

v4

p1 + p2

ta ta

ta

(v3, ta)

p1

p2

p3

t1

t2 ta

p1 + p2

F = {p3}

8/26

Firing in an RPN

Three types of transitions:
1. Elementary transition
2. Abstract transition
3. Cut transition

v1 0

v2

p3

v3

p2

v4

p1 + p2

ta ta

ta

p1

p2

p3

t1

t2 ta

p1 + p2

F = {p3}

8/26

Firing in an RPN

Three types of transitions:
1. Elementary transition
2. Abstract transition
3. Cut transition

v1 0

v2

p3

v3

p2

v4

p1 + p2

ta ta

ta

(v2, τ)

p1

p2

p3

t1

t2 ta

p1 + p2

F = {p3}

8/26

Firing in an RPN

Three types of transitions:
1. Elementary transition
2. Abstract transition
3. Cut transition

v1 0

v2

p3

v3

p2

v4

p1 + p2

ta ta

ta

v1 p3

v3

p2

ta
(v2, τ)

p1

p2

p3

t1

t2 ta

p1 + p2

F = {p3}

8/26

Firing in an RPN
Three types of transitions:

1. Elementary transition
2. Abstract transition
3. Cut transition

A firing sequence:

s0
(v1,t1)−−→ s1

(v2,t2)−−−→ · · · sn−1
(vn,tn)−−−→ sn

Or equivalently s0
σ−→ sn for σ = (v1, t1)(v2, t2) . . . (vn, tn).

9/26

Goals of the paper

Order

Expressiveness

Complexity 2. Termination problem?

10/26

Goals of the paper

Order

Expressiveness

Complexity 2. Termination problem?

10/26

Goals of the paper

Order How do we order states?

Expressiveness

Complexity 2. Termination problem?

10/26

Goals of the paper

Order How do we order states?

Expressiveness

Complexity 2. Termination problem?

10/26

Goals of the paper

Order How do we order states?

Expressiveness How expressive are RPN coverability languages?

Complexity 2. Termination problem?

10/26

Goals of the paper

Order How do we order states?

Expressiveness How expressive are RPN coverability languages?

Complexity 1. Coverability problem?

2. Termination problem?

10/26

Goals of the paper

Order How do we order states?

Expressiveness How expressive are RPN coverability languages?

Complexity 1. Coverability problem?

2. Termination problem?

10/26

Outline

1. Introduction

2. Recursive Petri nets

3. Expressiveness and order
3.1 Order
3.2 Language

4. Complexity
4.1 Coverability
4.2 Termination

5. Conclusion and perspectives

11/26

Ordering states
si = 〈Vi,Mi, Ei,Λi〉

0

p4
2p1

p2 0

t2
p1

p2

t1

W+(t′) = p1

s2s1

1. An injective tree homomorphism, i.e. f(prd(v)) = prd(f(v)),
f : V1→ V2.

2. For every v ∈ V1,M1(v) ≤M2(f(v)) .
3. For every e ∈ E1,W+(Λ1(e)) ≤W+(Λ2(f(e))) .

12/26

Ordering states
si = 〈Vi,Mi, Ei,Λi〉

0

p4
2p1

p2 0

t2
p1

p2

t1

W+(t′) = p1

s2s1

1. An injective tree homomorphism, i.e. f(prd(v)) = prd(f(v)),
f : V1→ V2.

2. For every v ∈ V1,M1(v) ≤M2(f(v)) .
3. For every e ∈ E1,W+(Λ1(e)) ≤W+(Λ2(f(e))) .

12/26

Ordering states
si = 〈Vi,Mi, Ei,Λi〉

0

p4
2p1

p2 0

t2
p1

p2

t1 �

W+(t′) = p1

s2s1

1. An injective tree homomorphism, i.e. f(prd(v)) = prd(f(v)),
f : V1→ V2.

2. For every v ∈ V1,M1(v) ≤M2(f(v)) .
3. For every e ∈ E1,W+(Λ1(e)) ≤W+(Λ2(f(e))) .

12/26

Ordering states
si = 〈Vi,Mi, Ei,Λi〉

0

p4
2p1

p2 0

t2
p1

p2

t1 �

W+(t′) = p1

s2s1

1. An injective tree homomorphism, i.e. f(prd(v)) = prd(f(v)),
f : V1→ V2.

2. For every v ∈ V1,M1(v) ≤M2(f(v)) .
3. For every e ∈ E1,W+(Λ1(e)) ≤W+(Λ2(f(e))) .

12/26

Ordering states
si = 〈Vi,Mi, Ei,Λi〉

0

p4
2p1

p2 0

t2
p1

p2

t1 �

W+(t′) = p1

s2s1

1. An injective tree homomorphism, i.e. f(prd(v)) = prd(f(v)),
f : V1→ V2.

2. For every v ∈ V1,M1(v) ≤M2(f(v)) .

3. For every e ∈ E1,W+(Λ1(e)) ≤W+(Λ2(f(e))) .

12/26

Ordering states
si = 〈Vi,Mi, Ei,Λi〉

0

p4
2p1

p2 0

t2
p1

p2

t1 �

W+(t1) = p1 ≤ 2p1 =W+(t2)

s2s1

1. An injective tree homomorphism, i.e. f(prd(v)) = prd(f(v)),
f : V1→ V2.

2. For every v ∈ V1,M1(v) ≤M2(f(v)) .
3. For every e ∈ E1,W+(Λ1(e)) ≤W+(Λ2(f(e))) .

12/26

Is RPN a WSTS?

• � is a quasi order

X

• � is strongly compatible

• � is a wqo

7

13/26

Is RPN a WSTS?

• � is a quasi order

X

• � is strongly compatible

• � is a wqo

7

13/26

Is RPN a WSTS?

• � is a quasi orderX

• � is strongly compatible

• � is a wqo

7

13/26

Is RPN a WSTS?

• � is a quasi orderX

• � is strongly compatible, i.e:

• � is a wqo

7

13/26

Is RPN a WSTS?

• � is a quasi orderX

• � is strongly compatible, i.e:

• � is a wqo

7

s2 s′2

s1 s′1

(f(v), t)

(v, t)

�

13/26

Is RPN a WSTS?

• � is a quasi orderX

• � is strongly compatible, i.e:

• � is a wqo

7

s2 s′2s
′
2

s1 s′1

(f(v), t)(f(v), t)

(v, t)

� �
13/26

Is RPN a WSTS?

• � is a quasi orderX

• � is strongly compatibleX

• � is a wqo

7

13/26

Is RPN a WSTS?

• � is a quasi orderX

• � is strongly compatibleX

• � is a wqo

7

13/26

Is RPN a WSTS?

• � is a quasi orderX

• � is strongly compatibleX

• � is a wqo 7

s1

s2

sn
..
.

p 0 p

t t

p 0 0 p

t t t

p 0 0 0 p

t t t t

13/26

RPN coverability languages

L (N , s0, Sf) = {λ(σ) | ∃ s0
σ−→ s � sf ∧ sf ∈ Sf}

• N - RPN

• s0 - initial state

• Sf - finite set of states

• λ : T∗ → ∗ - morphism function.

14/26

RPN coverability languages

L (N , s0, Sf) = {λ(σ) | ∃ s0
σ−→ s � sf ∧ sf ∈ Sf}

• N - RPN

• s0 - initial state

• Sf - finite set of states

• λ : T∗ → ∗ - morphism function.

14/26

RPN coverability languages

L (N , s0, Sf) = {λ(σ) | ∃ s0
σ−→ s � sf ∧ sf ∈ Sf}

• N - RPN

• s0 - initial state

• Sf - finite set of states

• λ : T∗ → ∗ - morphism function.

14/26

Comparison

L1 = {w ∈ {d, e}∗ | w = ̃︀w}
L2 = {ambncp | m ≥ n ≥ p}
L3 = {anbncn}

15/26

Comparison

CFL

L1 = {w ∈ {d, e}∗ | w = ̃︀w}
L2 = {ambncp | m ≥ n ≥ p}
L3 = {anbncn}

15/26

Comparison

CFLCov-PNL

L1 = {w ∈ {d, e}∗ | w = ̃︀w}
L2 = {ambncp | m ≥ n ≥ p}
L3 = {anbncn}

15/26

Comparison

CFLCov-PNL

· L1

L1 = {w ∈ {d, e}∗ | w = ̃︀w}

L2 = {ambncp | m ≥ n ≥ p}
L3 = {anbncn}

15/26

Comparison

CFLCov-PNL

· L1· L2

L1 = {w ∈ {d, e}∗ | w = ̃︀w}
L2 = {ambncp | m ≥ n ≥ p}

L3 = {anbncn}

15/26

Comparison

CFLCov-PNL

Cov-RPNL

· L1· L2

L1 = {w ∈ {d, e}∗ | w = ̃︀w}
L2 = {ambncp | m ≥ n ≥ p}

L3 = {anbncn}

15/26

Comparison

CFLCov-PNL

Cov-RPNL

· L1· L2

· L1 ∪ L2

L1 = {w ∈ {d, e}∗ | w = ̃︀w}
L2 = {ambncp | m ≥ n ≥ p}

L3 = {anbncn}

15/26

Comparison

Reach-PNL
CFLCov-PNL

Cov-RPNL

· L1· L2

· L1 ∪ L2

L1 = {w ∈ {d, e}∗ | w = ̃︀w}
L2 = {ambncp | m ≥ n ≥ p}

L3 = {anbncn}

15/26

Comparison

Reach-PNL
CFLCov-PNL

Cov-RPNL

· L1· L2

· L1 ∪ L2

· L3

L1 = {w ∈ {d, e}∗ | w = ̃︀w}
L2 = {ambncp | m ≥ n ≥ p}
L3 = {anbncn}

15/26

Outline

1. Introduction

2. Recursive Petri nets

3. Expressiveness and order
3.1 Order
3.2 Language

4. Complexity
4.1 Coverability
4.2 Termination

5. Conclusion and perspectives

16/26

Coverability problem - RPN
Given an RPN and s0, sf two states.

∃σ s0
σ−→ s � sf ?

Proposition:
s0

σ−→ s � sf
⇓

∃σ′ s.t. s0
σ′−→ s′ � sf

with |σ′| ≤ 22cn log n .

From this proposition and Savitch’s theorem, the coverability
problem of RPN is EXPSPACE-complete.

17/26

Coverability problem - RPN
Given an RPN and s0, sf two states.

∃σ s0
σ−→ s � sf ?

Proposition:
s0

σ−→ s � sf
⇓

∃σ′ s.t. s0
σ′−→ s′ � sf

with |σ′| ≤ 22cn log n .

From this proposition and Savitch’s theorem, the coverability
problem of RPN is EXPSPACE-complete.

17/26

Coverability problem - RPN
Given an RPN and s0, sf two states.

∃σ s0
σ−→ s � sf ?

Proposition:
s0

σ−→ s � sf

⇓

∃σ′ s.t. s0
σ′−→ s′ � sf

with |σ′| ≤ 22cn log n .

From this proposition and Savitch’s theorem, the coverability
problem of RPN is EXPSPACE-complete.

17/26

Coverability problem - RPN
Given an RPN and s0, sf two states.

∃σ s0
σ−→ s � sf ?

Proposition:
s0

σ−→ s � sf
⇓

∃σ′ s.t. s0
σ′−→ s′ � sf

with |σ′| ≤ 22cn log n .

From this proposition and Savitch’s theorem, the coverability
problem of RPN is EXPSPACE-complete.

17/26

Coverability problem - RPN
Given an RPN and s0, sf two states.

∃σ s0
σ−→ s � sf ?

Proposition:
s0

σ−→ s � sf
⇓

∃σ′ s.t. s0
σ′−→ s′ � sf

with |σ′| ≤ 22cn log n .

From this proposition and Savitch’s theorem, the coverability
problem of RPN is EXPSPACE-complete.

17/26

Coverability problem - RPN
Given an RPN and s0, sf two states.

∃σ s0
σ−→ s � sf ?

Proposition:
s0

σ−→ s � sf
⇓

∃σ′ s.t. s0
σ′−→ s′ � sf

with |σ′| ≤ 22cn log n .

From this proposition and Savitch’s theorem, the coverability
problem of RPN is EXPSPACE-complete.

17/26

Coverability problem - RPN
Given an RPN and s0, sf two states.

∃σ s0
σ−→ s � sf ?

Proposition:
s0

σ−→ s � sf
⇓

∃σ′ s.t. s0
σ′−→ s′ � sf

with |σ′| ≤ 22cn log n .

From this proposition and Savitch’s theorem, the coverability
problem of RPN is EXPSPACE-complete.

17/26

Coverability problem - PN
Given an PN andm0,mf two markings.

∃σ m0
σ−→ m � mf ?

Proposition:[Rac78]
m0

σ−→ m � mf

⇓

∃σ′ s.t. m0
σ′−→ m′ � mf

with |σ′| ≤ 22cn log n .

From this proposition and Savitch’s theorem, the coverability
problem of PN is EXPSPACE-complete.

18/26

Sketch of proof

Assume s0
σ−→ s � sf .

There exists s0
σ′−→ s′ � sf s.t.

Where:

1. σi is a covering sequence in ({vi} × Tel)∗

2. k ≤ 3n

3.
∑︀

i≤k |σabk | ≤ 3n

Applying Rackoff’s proposition to each σi,

we get s0
σ′′−→ s′′ � sf , s.t. |σ′′| ≤ 22cn log n .

19/26

Sketch of proof
Assume s0

σ−→ s � sf .

There exists s0
σ′−→ s′ � sf s.t.

Where:

1. σi is a covering sequence in ({vi} × Tel)∗

2. k ≤ 3n

3.
∑︀

i≤k |σabk | ≤ 3n

Applying Rackoff’s proposition to each σi,

we get s0
σ′′−→ s′′ � sf , s.t. |σ′′| ≤ 22cn log n .

19/26

Sketch of proof
Assume s0

σ−→ s � sf .

There exists s0
σ′−→ s′ � sf s.t.

Where:

1. σi is a covering sequence in ({vi} × Tel)∗

2. k ≤ 3n

3.
∑︀

i≤k |σabk | ≤ 3n

Applying Rackoff’s proposition to each σi,

we get s0
σ′′−→ s′′ � sf , s.t. |σ′′| ≤ 22cn log n .

19/26

Sketch of proof
Assume s0

σ−→ s � sf .

There exists s0
σ′−→ s′ � sf s.t.

σ′ = σ1(v1, τ)σ2(v2, τ) . . . σℓ(vℓ, τ)σℓ+1σabℓ+1 . . . σkσ
ab
k

Where:

1. σi is a covering sequence in ({vi} × Tel)∗

2. k ≤ 3n

3.
∑︀

i≤k |σabk | ≤ 3n

Applying Rackoff’s proposition to each σi,

we get s0
σ′′−→ s′′ � sf , s.t. |σ′′| ≤ 22cn log n .

19/26

Sketch of proof
Assume s0

σ−→ s � sf .

There exists s0
σ′−→ s′ � sf s.t.

σ′ = σ1(v1, τ)σ2(v2, τ) . . . σℓ(vℓ, τ)σℓ+1σabℓ+1 . . . σkσ
ab
k

Where:

1. σi is a covering sequence in ({vi} × Tel)∗

2. k ≤ 3n

3.
∑︀

i≤k |σabk | ≤ 3n

Applying Rackoff’s proposition to each σi,

we get s0
σ′′−→ s′′ � sf , s.t. |σ′′| ≤ 22cn log n .

19/26

Sketch of proof
Assume s0

σ−→ s � sf .

There exists s0
σ′−→ s′ � sf s.t.

σ′ = σ1(v1, τ)σ2(v2, τ) . . . σℓ(vℓ, τ)σℓ+1σabℓ+1 . . . σkσ
ab
k

Where:

1. σi is a covering sequence in ({vi} × Tel)∗

2. k ≤ 3n

3.
∑︀

i≤k |σabk | ≤ 3n

Applying Rackoff’s proposition to each σi,

we get s0
σ′′−→ s′′ � sf , s.t. |σ′′| ≤ 22cn log n .

19/26

Sketch of proof
Assume s0

σ−→ s � sf .

There exists s0
σ′−→ s′ � sf s.t.

σ′ = σ1(v1, τ)σ2(v2, τ) . . . σℓ(vℓ, τ)σℓ+1σabℓ+1 . . . σkσ
ab
k

Where:

1. σi is a covering sequence in ({vi} × Tel)∗

2. k ≤ 3n

3.
∑︀

i≤k |σabk | ≤ 3n

Applying Rackoff’s proposition to each σi,

we get s0
σ′′−→ s′′ � sf , s.t. |σ′′| ≤ 22cn log n .

19/26

Sketch of proof
Assume s0

σ−→ s � sf .

There exists s0
σ′−→ s′ � sf s.t.

σ′ = σ1(v1, τ)σ2(v2, τ) . . . σℓ(vℓ, τ)σℓ+1σabℓ+1 . . . σkσ
ab
k

Where:

1. σi is a covering sequence in ({vi} × Tel)∗

2. k ≤ 3n

3.
∑︀

i≤k |σabk | ≤ 3n

Applying Rackoff’s proposition to each σi,

we get s0
σ′′−→ s′′ � sf , s.t. |σ′′| ≤ 22cn log n .

19/26

Termination

Given an RPN and s0 a state.

∃(vi, ti)∞i=0 s0
(v0,t0)−−−→ s1

(v1,t1)−−→ . . . ?

Theorem. The termination problem for RPN is EXPSPACE-complete.
Sketch of proof. Two types of infinite sequences:

• Deep : along states with unbounded depth.

1. Build an abstract graph in EXPSPACE (using RPN Coverability).
2. Check for a deep sequence in linear time.

• Shallow : along states with bounded depth.
Reduced to small number of PN termination problems.

20/26

Termination
Given an RPN and s0 a state.

∃(vi, ti)∞i=0 s0
(v0,t0)−−−→ s1

(v1,t1)−−→ . . . ?

Theorem. The termination problem for RPN is EXPSPACE-complete.
Sketch of proof. Two types of infinite sequences:

• Deep : along states with unbounded depth.

1. Build an abstract graph in EXPSPACE (using RPN Coverability).
2. Check for a deep sequence in linear time.

• Shallow : along states with bounded depth.
Reduced to small number of PN termination problems.

20/26

Termination
Given an RPN and s0 a state.

∃(vi, ti)∞i=0 s0
(v0,t0)−−−→ s1

(v1,t1)−−→ . . . ?

Theorem. The termination problem for RPN is EXPSPACE-complete.
Sketch of proof. Two types of infinite sequences:

• Deep : along states with unbounded depth.

1. Build an abstract graph in EXPSPACE (using RPN Coverability).
2. Check for a deep sequence in linear time.

• Shallow : along states with bounded depth.
Reduced to small number of PN termination problems.

20/26

Termination
Given an RPN and s0 a state.

∃(vi, ti)∞i=0 s0
(v0,t0)−−−→ s1

(v1,t1)−−→ . . . ?

Theorem. The termination problem for RPN is EXPSPACE-complete.

Sketch of proof. Two types of infinite sequences:

• Deep : along states with unbounded depth.

1. Build an abstract graph in EXPSPACE (using RPN Coverability).
2. Check for a deep sequence in linear time.

• Shallow : along states with bounded depth.
Reduced to small number of PN termination problems.

20/26

Termination
Given an RPN and s0 a state.

∃(vi, ti)∞i=0 s0
(v0,t0)−−−→ s1

(v1,t1)−−→ . . . ?

Theorem. The termination problem for RPN is EXPSPACE-complete.
Sketch of proof.

Two types of infinite sequences:

• Deep : along states with unbounded depth.

1. Build an abstract graph in EXPSPACE (using RPN Coverability).
2. Check for a deep sequence in linear time.

• Shallow : along states with bounded depth.
Reduced to small number of PN termination problems.

20/26

Termination
Given an RPN and s0 a state.

∃(vi, ti)∞i=0 s0
(v0,t0)−−−→ s1

(v1,t1)−−→ . . . ?

Theorem. The termination problem for RPN is EXPSPACE-complete.
Sketch of proof. Two types of infinite sequences:

• Deep : along states with unbounded depth.

1. Build an abstract graph in EXPSPACE (using RPN Coverability).
2. Check for a deep sequence in linear time.

• Shallow : along states with bounded depth.

Reduced to small number of PN termination problems.

20/26

Termination
Given an RPN and s0 a state.

∃(vi, ti)∞i=0 s0
(v0,t0)−−−→ s1

(v1,t1)−−→ . . . ?

Theorem. The termination problem for RPN is EXPSPACE-complete.
Sketch of proof. Two types of infinite sequences:

• Deep : along states with unbounded depth.

1. Build an abstract graph in EXPSPACE (using RPN Coverability).
2. Check for a deep sequence in linear time.

• Shallow : along states with bounded depth.

Reduced to small number of PN termination problems.

20/26

Termination
Given an RPN and s0 a state.

∃(vi, ti)∞i=0 s0
(v0,t0)−−−→ s1

(v1,t1)−−→ . . . ?

Theorem. The termination problem for RPN is EXPSPACE-complete.
Sketch of proof. Two types of infinite sequences:

• Deep : along states with unbounded depth.
1. Build an abstract graph in EXPSPACE (using RPN Coverability).

2. Check for a deep sequence in linear time.

• Shallow : along states with bounded depth.

Reduced to small number of PN termination problems.

20/26

Termination
Given an RPN and s0 a state.

∃(vi, ti)∞i=0 s0
(v0,t0)−−−→ s1

(v1,t1)−−→ . . . ?

Theorem. The termination problem for RPN is EXPSPACE-complete.
Sketch of proof. Two types of infinite sequences:

• Deep : along states with unbounded depth.
1. Build an abstract graph in EXPSPACE (using RPN Coverability).
2. Check for a deep sequence in linear time.

• Shallow : along states with bounded depth.

Reduced to small number of PN termination problems.

20/26

Termination
Given an RPN and s0 a state.

∃(vi, ti)∞i=0 s0
(v0,t0)−−−→ s1

(v1,t1)−−→ . . . ?

Theorem. The termination problem for RPN is EXPSPACE-complete.
Sketch of proof. Two types of infinite sequences:

• Deep : along states with unbounded depth.
1. Build an abstract graph in EXPSPACE (using RPN Coverability).
2. Check for a deep sequence in linear time.

• Shallow : along states with bounded depth.

Reduced to small number of PN termination problems.

20/26

Termination
Given an RPN and s0 a state.

∃(vi, ti)∞i=0 s0
(v0,t0)−−−→ s1

(v1,t1)−−→ . . . ?

Theorem. The termination problem for RPN is EXPSPACE-complete.
Sketch of proof. Two types of infinite sequences:

• Deep : along states with unbounded depth.
1. Build an abstract graph in EXPSPACE (using RPN Coverability).
2. Check for a deep sequence in linear time.

• Shallow : along states with bounded depth.
Reduced to small number of PN termination problems.

20/26

Outline

1. Introduction

2. Recursive Petri nets

3. Expressiveness and order
3.1 Order
3.2 Language

4. Complexity
4.1 Coverability
4.2 Termination

5. Conclusion and perspectives

21/26

Contributions

• Expressiveness:

– Cov-PNL+ CFL (Cov-RPNL
– Cov-RPNL 6⊆ Reach-PNL 6⊆ Cov-RPNL
– ∀L ∈ RE ∃L ∈ Cov-RPNL, R ∈ RL and h, s.t.L = h(L ∩ R)

• Complexity: Coverability and termination problems are
EXPSPACE-complete.

22/26

Contributions

• Expressiveness:

– Cov-PNL+ CFL (Cov-RPNL
– Cov-RPNL 6⊆ Reach-PNL 6⊆ Cov-RPNL
– ∀L ∈ RE ∃L ∈ Cov-RPNL, R ∈ RL and h, s.t.L = h(L ∩ R)

• Complexity: Coverability and termination problems are
EXPSPACE-complete.

22/26

Contributions

• Expressiveness:
– Cov-PNL+ CFL (Cov-RPNL

– Cov-RPNL 6⊆ Reach-PNL 6⊆ Cov-RPNL
– ∀L ∈ RE ∃L ∈ Cov-RPNL, R ∈ RL and h, s.t.L = h(L ∩ R)

• Complexity: Coverability and termination problems are
EXPSPACE-complete.

22/26

Contributions

• Expressiveness:
– Cov-PNL+ CFL (Cov-RPNL
– Cov-RPNL 6⊆ Reach-PNL 6⊆ Cov-RPNL

– ∀L ∈ RE ∃L ∈ Cov-RPNL, R ∈ RL and h, s.t.L = h(L ∩ R)

• Complexity: Coverability and termination problems are
EXPSPACE-complete.

22/26

Contributions

• Expressiveness:
– Cov-PNL+ CFL (Cov-RPNL
– Cov-RPNL 6⊆ Reach-PNL 6⊆ Cov-RPNL
– ∀L ∈ RE ∃L ∈ Cov-RPNL, R ∈ RL and h, s.t.L = h(L ∩ R)

• Complexity: Coverability and termination problems are
EXPSPACE-complete.

22/26

Contributions

• Expressiveness:
– Cov-PNL+ CFL (Cov-RPNL
– Cov-RPNL 6⊆ Reach-PNL 6⊆ Cov-RPNL
– ∀L ∈ RE ∃L ∈ Cov-RPNL, R ∈ RL and h, s.t.L = h(L ∩ R)

• Complexity: Coverability and termination problems are
EXPSPACE-complete.

22/26

Future works

• w ∈ Cov-RPNL?

• Complexity: Boundedness and Finiteness problems?

• Cov-RPNL ⊆ Reach-RPNL?

Reach-PNL CFLCov-PNL

Cov-RPNL

Reach-PNL CFLCov-PNL

Cov-RPNL

23/26

Future works

• w ∈ Cov-RPNL?

• Complexity: Boundedness and Finiteness problems?

• Cov-RPNL ⊆ Reach-RPNL?

Reach-PNL CFLCov-PNL

Cov-RPNL

Reach-PNL CFLCov-PNL

Cov-RPNL

23/26

Future works

• w ∈ Cov-RPNL?

• Complexity: Boundedness and Finiteness problems?

• Cov-RPNL ⊆ Reach-RPNL?

Reach-PNL CFLCov-PNL

Cov-RPNL

Reach-PNL CFLCov-PNL

Cov-RPNL

23/26

Future works

• w ∈ Cov-RPNL?

• Complexity: Boundedness and Finiteness problems?

• Cov-RPNL ⊆ Reach-RPNL?

Reach-PNL CFLCov-PNL

Cov-RPNL

Reach-RPN

Reach-PNL CFLCov-PNL

Cov-RPNL

Reach-RPN

OR ?

23/26

Future works

• w ∈ Cov-RPNL?

• Complexity: Boundedness and Finiteness problems?

• Cov-RPNL ⊆ Reach-RPNL?

Reach-PNL CFLCov-PNL

Cov-RPNL

Reach-RPN

Reach-PNL CFLCov-PNL

Cov-RPNL

Reach-RPN

OR ?

23/26

Questions?

PN+Stack BVASS RPN

Reachability TOWER-hard TOWER-hard Decidable
Coverability TOWER-hard 2-EXPTIME-complete EXPSPACE-complete
Boundedness Decidable 2-EXPTIME-complete ?
Termination Decidable ? EXPSPACE-complete

24/26

Bibliography

[EH96] Amal E, Seghrouchni and Serge Haddad, A recursive model
for distributed planning, ICMAS 1996, Kyoto, Japan, 1996,
pp. 307–314.

[Rac78] Charles Rackoff, The covering and boundedness problems
for vector addition systems, Theoretical Computer Science 6
(1978), no. 2, 223 – 231.

25/26

Fault tolerant system

pstart

prepair

pfault pinit

pcount

trepairtstart
pinit + pfault

tcount

F = {pfault}

26/26

	Introduction
	Recursive Petri nets
	Expressiveness and order
	Order
	Language

	Complexity
	Coverability
	Termination

	Conclusion and perspectives

