Coverability and Termination in Recursive Petri Nets

Petri Nets 2019

Alain Finkel, Serge Haddad, Igor Khmelnitsky

Petri nets

Petri nets

Hardness of modeling:

- Exceptions
- Faults
- Interrupts

Petri nets

Hardness of modeling:

- Exceptions
- Faults
- Interrupts

Expressiveness: CFL $\nsubseteq P N L \nsubseteq C F L$.

Recursive Petri nets

Introduced in [EH96] (around 100 citations).
Modeling:

- Interrupts
- Faults
- Exceptions

Expressiveness: CFL $\subsetneq R P N L$.

Recursive Petri nets

Introduced in [EH96] (around 100 citations).

Modeling:

- Interrupts
- Faults
- Exceptions

Expressiveness: CFL $\subsetneq R P N L$.

Decidability:

- Reachability
- Boundedness
- Termination

Related work

Related work

PN+Stack

BVASS

Related work

	PN+Stack	BVASS
Reachability	TOWER-hard	TOWER-hard
Coverability	TOWER-hard	2-EXPTIME-complete
Boundedness	Decidable	2-EXPTIME-complete
Termination	Decidable	$?$

Outline

1. Introduction

2. Recursive Petri nets
3. Expressiveness and order
3.1 Order
3.2 Language
4. Complexity
4.1 Coverability
4.2 Termination
5. Conclusion and perspectives

From Petri Net to Recursive Petri Net

A Petri net

A marking

p_{1}

From Petri Net to Recursive Petri Net

A Petri net

A marking

p_{1}

From Petri Net to Recursive Petri Net

A Petri net

A marking

$2 p_{2}$

From Petri Net to Recursive Petri Net

A Petri net

A marking

$2 p_{2}$

From Petri Net to Recursive Petri Net

Abstract transitions

A marking

$2 p_{2}$

From Petri Net to Recursive Petri Net

Abstract transitions

A marking

$2 p_{2}$

From Petri Net to Recursive Petri Net

 Abstract transitions

From Petri Net to Recursive Petri Net

 Abstract transitions

From Petri Net to Recursive Petri Net

 Abstract transitions

From Petri Net to Recursive Petri Net

 Abstract transitions

From Petri Net to Recursive Petri Net

 Abstract transitions

From Petri Net to Recursive Petri Net

 Abstract transitions

From Petri Net to Recursive Petri Net

Abstract transitions

From Petri Net to Recursive Petri Net

Cut transitions

From Petri Net to Recursive Petri Net

Cut transitions

From Petri Net to Recursive Petri Net

Cut transitions

Syntax

A Recursive Petri Net, consists of:

Syntax

A Recursive Petri Net, consists of:

- $P=\left\{p_{1}, p_{2}, p_{3}\right\}$
- $T=T_{e l} \uplus T_{a b}=\left\{t_{1}, t_{2}\right\} \uplus\left\{t_{a}\right\}$
- W^{-}and W^{+}incidence matrices:

$$
W^{-}\left(t_{1}\right)=p_{1}, W^{+}\left(t_{1}\right)=2 p_{2}
$$

- $\Omega: T_{a b} \rightarrow \mathbb{N}^{P}$ starting markings:

$$
\Omega\left(t_{a}\right)=p_{1}+p_{2}
$$

- \mathscr{F} final markings:

$$
\mathscr{F}=\left\{p_{3}\right\}
$$

$$
\mathscr{F}=\left\{p_{3}\right\}
$$

Syntax

A Recursive Petri Net, consists of:

- $P=\left\{p_{1}, p_{2}, p_{3}\right\}$
- $T=T_{e l} \uplus T_{a b}=\left\{t_{1}, t_{2}\right\} \uplus\left\{t_{a}\right\}$
- W^{-}and W^{+}incidence matrices:

$$
W^{-}\left(t_{1}\right)=p_{1}, W^{+}\left(t_{1}\right)=2 p_{2}
$$

- $\Omega: T_{a b} \rightarrow \mathbb{N}^{P}$ starting markings:

$$
\Omega\left(t_{a}\right)=p_{1}+p_{2}
$$

- \mathscr{F} final markings:

$$
\mathscr{F}=\left\{p_{3}\right\}
$$

$$
\mathscr{F}=\left\{p_{3}\right\}
$$

Syntax

A Recursive Petri Net, consists of:

- $P=\left\{p_{1}, p_{2}, p_{3}\right\}$
- $T=T_{e l} \uplus T_{a b}=\left\{t_{1}, t_{2}\right\} \uplus\left\{t_{a}\right\}$
- W^{-}and W^{+}incidence matrices:

$$
W^{-}\left(t_{1}\right)=p_{1}, W^{+}\left(t_{1}\right)=2 p_{2}
$$

- $\Omega: T_{a b} \rightarrow \mathbb{N}^{P}$ starting markings:

$$
\Omega\left(t_{a}\right)=p_{1}+p_{2}
$$

- \mathscr{F} final markings:

$$
\mathscr{F}=\left\{p_{3}\right\}
$$

$$
\mathscr{F}=\left\{p_{3}\right\}
$$

Syntax

A Recursive Petri Net, consists of:

- $P=\left\{p_{1}, p_{2}, p_{3}\right\}$
- $T=T_{e l} \uplus T_{a b}=\left\{t_{1}, t_{2}\right\} \uplus\left\{t_{a}\right\}$
- W^{-}and W^{+}incidence matrices:

$$
W^{-}\left(t_{1}\right)=p_{1}, W^{+}\left(t_{1}\right)=2 p_{2}
$$

- $\Omega: T_{a b} \rightarrow \mathbb{N}^{P}$ starting markings:

$$
\Omega\left(t_{a}\right)=p_{1}+p_{2}
$$

- \mathscr{F} final markings:

$$
\mathscr{F}=\left\{p_{3}\right\}
$$

$$
\mathscr{F}=\left\{p_{3}\right\}
$$

Syntax

A Recursive Petri Net, consists of:

- $P=\left\{p_{1}, p_{2}, p_{3}\right\}$
- $T=T_{e l} \uplus T_{a b}=\left\{t_{1}, t_{2}\right\} \uplus\left\{t_{a}\right\}$
- W^{-}and W^{+}incidence matrices:

$$
W^{-}\left(t_{1}\right)=p_{1}, W^{+}\left(t_{1}\right)=2 p_{2}
$$

- $\Omega: T_{a b} \rightarrow \mathbb{N}^{P}$ starting markings:

$$
\Omega\left(t_{a}\right)=p_{1}+p_{2}
$$

- \mathscr{F} final markings:

$$
\mathscr{F}=\left\{p_{3}\right\}
$$

$$
\mathscr{F}=\left\{p_{3}\right\}
$$

A State of an RPN
A state s of an RPN is a directed labeled tree, where:

A State of an RPN

A state s of an RPN is a directed labeled tree, where:

- V a set of threads (vertices)

$$
V=\left\{v_{1}, v_{2}, v_{3}\right\}
$$

- $M: V \rightarrow \mathbb{N}^{P}$ a marking of the threads

$$
M\left(v_{1}\right)=0, M\left(v_{2}\right)=p_{3}, M\left(v_{3}\right)=p_{2}
$$

- $E \subseteq V \times V$ a set of edges

$$
E=\left\{\left(v_{1}, v_{2}\right),\left(v_{1}, v_{3}\right)\right\}
$$

- $\Lambda: E \rightarrow T_{a b}$, an edge labeling

$$
\wedge\left(v_{1}, v_{2}\right)=t_{a}, \wedge\left(v_{1}, v_{3}\right)=t_{a}
$$

A State of an RPN

A state s of an RPN is a directed labeled tree, where:

- V a set of threads (vertices)

$$
V=\left\{v_{1}, v_{2}, v_{3}\right\}
$$

- $M: V \rightarrow \mathbb{N}^{P}$ a marking of the threads

$$
M\left(v_{1}\right)=0, M\left(v_{2}\right)=p_{3}, M\left(v_{3}\right)=p_{2}
$$

- $E \subseteq V \times V$ a set of edges

$$
E=\left\{\left(v_{1}, v_{2}\right),\left(v_{1}, v_{3}\right)\right\}
$$

- $\Lambda: E \rightarrow T_{a b}$, an edge labeling

$$
\wedge\left(v_{1}, v_{2}\right)=t_{a}, \wedge\left(v_{1}, v_{3}\right)=t_{a}
$$

A State of an RPN

A state s of an RPN is a directed labeled tree, where:

- V a set of threads (vertices)

$$
V=\left\{v_{1}, v_{2}, v_{3}\right\}
$$

- $M: V \rightarrow \mathbb{N}^{P}$ a marking of the threads

$$
M\left(v_{1}\right)=0, M\left(v_{2}\right)=p_{3}, M\left(v_{3}\right)=p_{2}
$$

- $E \subseteq V \times V$ a set of edges

$$
E=\left\{\left(v_{1}, v_{2}\right),\left(v_{1}, v_{3}\right)\right\}
$$

- $\Lambda: E \rightarrow T_{a b}$, an edge labeling

$$
\wedge\left(v_{1}, v_{2}\right)=t_{a}, \wedge\left(v_{1}, v_{3}\right)=t_{a}
$$

A State of an RPN

A state s of an RPN is a directed labeled tree, where:

- V a set of threads (vertices)

$$
V=\left\{v_{1}, v_{2}, v_{3}\right\}
$$

- $M: V \rightarrow \mathbb{N}^{P}$ a marking of the threads

$$
M\left(v_{1}\right)=0, M\left(v_{2}\right)=p_{3}, M\left(v_{3}\right)=p_{2}
$$

- $E \subseteq V \times V$ a set of edges

$$
E=\left\{\left(v_{1}, v_{2}\right),\left(v_{1}, v_{3}\right)\right\}
$$

- $\Lambda: E \rightarrow T_{a b}$, an edge labeling

$$
\wedge\left(v_{1}, v_{2}\right)=t_{a}, \wedge\left(v_{1}, v_{3}\right)=t_{a}
$$

A State of an RPN

A state s of an RPN is a directed labeled tree, where:

- V a set of threads (vertices)

$$
V=\left\{v_{1}, v_{2}, v_{3}\right\}
$$

- $M: V \rightarrow \mathbb{N}^{P}$ a marking of the threads

$$
M\left(v_{1}\right)=0, M\left(v_{2}\right)=p_{3}, M\left(v_{3}\right)=p_{2}
$$

- $E \subseteq V \times V$ a set of edges

$$
E=\left\{\left(v_{1}, v_{2}\right),\left(v_{1}, v_{3}\right)\right\}
$$

- $\Lambda: E \rightarrow T_{a b}$, an edge labeling

$$
\wedge\left(v_{1}, v_{2}\right)=t_{a}, \wedge\left(v_{1}, v_{3}\right)=t_{a}
$$

Firing in an RPN

Three types of transitions:

Firing in an RPN

Three types of transitions:

1. Elementary transition

Firing in an RPN

Three types of transitions:

1. Elementary transition

Firing in an RPN

Three types of transitions:

1. Elementary transition

Firing in an RPN

Three types of transitions:

1. Elementary transition
2. Abstract transition

Firing in an RPN

Three types of transitions:

1. Elementary transition
2. Abstract transition

Firing in an RPN

Three types of transitions:

1. Elementary transition
2. Abstract transition

Firing in an RPN

Three types of transitions:

1. Elementary transition
2. Abstract transition
3. Cut transition

Firing in an RPN

Three types of transitions:

1. Elementary transition
2. Abstract transition
3. Cut transition

Firing in an RPN

Three types of transitions:

1. Elementary transition
2. Abstract transition
3. Cut transition

$\mathscr{F}=\left\{p_{3}\right\}$

Firing in an RPN

Three types of transitions:

1. Elementary transition
2. Abstract transition
3. Cut transition

A firing sequence:

$$
s_{0} \xrightarrow{\left(v_{1}, t_{1}\right)} s_{1} \xrightarrow{\left(v_{2}, t_{2}\right)} \cdots s_{n-1} \xrightarrow{\left(v_{n}, t_{n}\right)} s_{n}
$$

Or equivalently $s_{0} \xrightarrow{\sigma} s_{n}$ for $\sigma=\left(v_{1}, t_{1}\right)\left(v_{2}, t_{2}\right) \ldots\left(v_{n}, t_{n}\right)$.

Goals of the paper

Goals of the paper

Order

Goals of the paper

Order How do we order states?

Goals of the paper

Order How do we order states?

Expressiveness

Goals of the paper

Order How do we order states?

Expressiveness How expressive are RPN coverability languages?

Goals of the paper

Order How do we order states?

Expressiveness How expressive are RPN coverability languages?

Complexity 1. Coverability problem?

Goals of the paper

Order How do we order states?

Expressiveness How expressive are RPN coverability languages?

Complexity 1. Coverability problem?
2. Termination problem?

Outline

1. Introduction

2. Recursive Petri nets

3. Expressiveness and order
3.1 Order
3.2 Language

Complexity
4.1 Coverability
4.2 Termination
5. Conclusion and perspectives

Ordering states
 $s_{i}=\left\langle V_{i}, M_{i}, E_{i}, \Lambda_{i}\right\rangle$

Ordering states
 $s_{i}=\left\langle V_{i}, M_{i}, E_{i}, \Lambda_{i}\right\rangle$

Ordering states
 $s_{i}=\left\langle V_{i}, M_{i}, E_{i}, \Lambda_{i}\right\rangle$

Ordering states
 $s_{i}=\left\langle V_{i}, M_{i}, E_{i}, \Lambda_{i}\right\rangle$

S_{1}

1. An injective tree homomorphism, i.e. $f(\operatorname{prd}(v))=\operatorname{prd}(f(v))$, $f: V_{1} \rightarrow V_{2}$.

Ordering states
 $s_{i}=\left\langle V_{i}, M_{i}, E_{i}, \Lambda_{i}\right\rangle$

S_{1}

1. An injective tree homomorphism, i.e. $f(\operatorname{prd}(v))=\operatorname{prd}(f(v))$, $f: V_{1} \rightarrow V_{2}$.
2. For every $v \in V_{1}, M_{1}(v) \leq M_{2}(f(v))$.

Ordering states
 $s_{i}=\left\langle V_{i}, M_{i}, E_{i}, \Lambda_{i}\right\rangle$

S_{1}

$$
W^{+}\left(t_{1}\right)=p_{1} \leq 2 p_{1}=W^{+}\left(t_{2}\right)
$$

1. An injective tree homomorphism, i.e. $f(\operatorname{prd}(v))=\operatorname{prd}(f(v))$, $f: V_{1} \rightarrow V_{2}$.
2. For every $v \in V_{1}, M_{1}(v) \leq M_{2}(f(v))$.
3. For every $e \in E_{1}, W^{+}\left(\Lambda_{1}(e)\right) \leq W^{+}\left(\Lambda_{2}(f(e))\right)$.

Is RPN a WSTS?

Is RPN a WSTS?

- \preceq is a quasi order

Is RPN a WSTS?

- \preceq is a quasi order \checkmark

Is RPN a WSTS?

- \preceq is a quasi order \checkmark
- \preceq is strongly compatible, i.e:

Is RPN a WSTS?

- \preceq is a quasi order $\sqrt{ }$
- \preceq is strongly compatible, i.e:

$$
\begin{aligned}
& s_{2} \\
& \mathrm{YI} \\
& s_{1} \xrightarrow{(v, t)} s_{1}^{\prime}
\end{aligned}
$$

Is RPN a WSTS?

- \preceq is a quasi order \checkmark

$$
\begin{aligned}
& s_{2}(f(v), t), s_{2}^{\prime} \\
& \mathrm{Yl} \quad \mathrm{Yl} \\
& s_{1} \xrightarrow{(v, t)} s_{1}^{\prime}
\end{aligned}
$$

Is RPN a WSTS?

- \preceq is a quasi order \checkmark
- \preceq is strongly compatible \checkmark

Is RPN a WSTS?

- \preceq is a quasi order \checkmark
- \preceq is strongly compatible \checkmark
- \preceq is a wqo

Is RPN a WSTS?

- \preceq is a quasi order \checkmark
- \preceq is strongly compatible \checkmark
- \leq is a wqo X

RPN coverability languages

RPN coverability languages

$$
\mathscr{L}\left(\mathscr{N}, s_{0}, s_{f}\right)=\left\{\lambda(\sigma) \mid \exists s_{0} \xrightarrow{\sigma} s \succeq s_{f} \wedge s_{f} \in s_{f}\right\}
$$

RPN coverability languages

$$
\mathscr{L}\left(\mathscr{N}, s_{0}, s_{f}\right)=\left\{\lambda(\sigma) \mid \exists s_{0} \xrightarrow{\sigma} s \succeq s_{f} \wedge s_{f} \in s_{f}\right\}
$$

- \mathscr{N}-RPN
- S_{0} - initial state
- S_{f} - finite set of states
- $\lambda: T^{*} \rightarrow \Sigma^{*}$ - morphism function.

Comparison

Comparison

Comparison

Comparison

$L_{1}=\left\{w \in\{d, e\}^{*} \mid w=\widetilde{w}\right\}$

Comparison

$$
\begin{aligned}
& L_{1}=\left\{w \in\{d, e\}^{*} \mid w=\widetilde{w}\right\} \\
& L_{2}=\left\{a^{m} b^{n} c^{p} \mid m \geq n \geq p\right\}
\end{aligned}
$$

Comparison

$$
\begin{aligned}
& L_{1}=\left\{w \in\{d, e\}^{*} \mid w=\widetilde{w}\right\} \\
& L_{2}=\left\{a^{m} b^{n} c^{p} \mid m \geq n \geq p\right\}
\end{aligned}
$$

Comparison

$L_{1}=\left\{w \in\{d, e\}^{*} \mid w=\widetilde{w}\right\}$
$L_{2}=\left\{a^{m} b^{n} c^{p} \mid m \geq n \geq p\right\}$

Comparison

Comparison

Outline

1. Introduction

2. Recursive Petri nets

3. Expressiveness and order
3.1 Order
3.2 Language
4. Complexity
4.1 Coverability
4.2 Termination
5. Conclusion and perspectives

Coverability problem - RPN

Given an RPN and s_{0}, s_{f} two states.

Coverability problem - RPN

Given an RPN and s_{0}, s_{f} two states.

$$
\exists \sigma s_{0} \xrightarrow{\sigma} s \succeq s_{f} ?
$$

Coverability problem - RPN

Given an RPN and s_{0}, s_{f} two states.

$$
\exists \sigma s_{0} \xrightarrow{\sigma} s \succeq s_{f} ?
$$

Proposition:

$$
s_{0} \xrightarrow{\sigma} s \succeq s_{f}
$$

Coverability problem - RPN

Given an RPN and s_{0}, s_{f} two states.

$$
\exists \sigma s_{0} \xrightarrow{\sigma} s \succeq s_{f} ?
$$

Proposition:

$$
\begin{gathered}
s_{0} \xrightarrow{\sigma} s \succeq s_{f} \\
\Downarrow
\end{gathered}
$$

Coverability problem - RPN

Given an RPN and s_{0}, s_{f} two states.

$$
\exists \sigma s_{0} \xrightarrow{\sigma} s \succeq s_{f} ?
$$

Proposition:

$$
\begin{aligned}
& s_{0} \xrightarrow{\sigma} s \succeq s_{f} \\
& \Downarrow \\
& \exists \sigma^{\prime} \text { s.t. } s_{0} \xrightarrow{\sigma^{\prime}} s^{\prime} s_{f}
\end{aligned}
$$

Coverability problem - RPN

Given an RPN and s_{0}, s_{f} two states.

$$
\exists \sigma s_{0} \xrightarrow{\sigma} s \succeq s_{f} ?
$$

Proposition:

$$
\begin{aligned}
& s_{0} \xrightarrow{\sigma} s \succeq s_{f} \\
& \Downarrow \\
& \exists \sigma^{\prime} \text { s.t. } s_{0} \xrightarrow{\sigma^{\prime}} s^{\prime} s_{f}
\end{aligned}
$$

with $\left|\sigma^{\prime}\right| \leq 2^{2^{\text {cnlogn }}}$.

Coverability problem - RPN

Given an RPN and s_{0}, s_{f} two states.

$$
\exists \sigma s_{0} \xrightarrow{\sigma} s \succeq s_{f} ?
$$

Proposition:

$$
\begin{aligned}
& s_{0} \xrightarrow{\sigma} s \\
& \Downarrow \\
& \exists \sigma_{f}^{\prime} \text { s.t. } s_{0} \xrightarrow{\sigma^{\prime}} s^{\prime} s_{f}
\end{aligned}
$$

with $\left|\sigma^{\prime}\right| \leq 2^{2^{\text {cnlogn }}}$.

From this proposition and Savitch's theorem, the coverability problem of RPN is EXPSPACE-complete.

Coverability problem - PN

Given an $P N$ and m_{0}, m_{f} two markings.

$$
\exists \sigma m_{0} \xrightarrow{\sigma} m \succeq m_{f} ?
$$

Proposition:[Rac78]

$$
\begin{aligned}
& m_{0} \xrightarrow{\sigma} m \underset{f}{\Downarrow} \\
& \exists \sigma^{\prime} \text { s.t. } m_{0} \xrightarrow{\sigma^{\prime}} m^{\prime} \succeq m_{f}
\end{aligned}
$$

with $\left|\sigma^{\prime}\right| \leq 2^{2^{\text {cnlogn }}}$.

From this proposition and Savitch's theorem, the coverability problem of PN is EXPSPACE-complete.

Sketch of proof

Sketch of proof

Assume $s_{0} \xrightarrow{\sigma} s \succeq s_{f}$.

Sketch of proof

Assume $s_{0} \xrightarrow{\sigma} s \succeq s_{f}$.
There exists $s_{0} \xrightarrow{\sigma^{\prime}} s^{\prime} \succeq s_{f}$ s.t.

Sketch of proof

Assume $s_{0} \xrightarrow{\sigma} s \succeq s_{f}$.
There exists $s_{0} \xrightarrow{\sigma^{\prime}} s^{\prime} \succeq s_{f}$ s.t.

$$
\sigma^{\prime}=\sigma_{1}\left(v_{1}, \tau\right) \sigma_{2}\left(v_{2}, \tau\right) \ldots \sigma_{\ell}\left(v_{\ell}, \tau\right) \sigma_{\ell+1} \sigma_{\ell+1}^{a b} \ldots \sigma_{k} \sigma_{k}^{a b}
$$

Where:

Sketch of proof

Assume $s_{0} \xrightarrow{\sigma} s \succeq s_{f}$.
There exists $s_{0} \xrightarrow{\sigma^{\prime}} s^{\prime} \succeq s_{f}$ s.t.

$$
\sigma^{\prime}=\sigma_{1}\left(v_{1}, \tau\right) \sigma_{2}\left(v_{2}, \tau\right) \ldots \sigma_{\ell}\left(v_{\ell}, \tau\right) \sigma_{\ell+1} \sigma_{\ell+1}^{a b} \ldots \sigma_{k} \sigma_{k}^{a b}
$$

Where:

1. σ_{i} is a covering sequence in $\left(\left\{v_{i}\right\} \times T_{e l}\right)^{*}$

Sketch of proof

Assume $s_{0} \xrightarrow{\sigma} s \succeq s_{f}$.
There exists $s_{0} \xrightarrow{\sigma^{\prime}} s^{\prime} \succeq s_{f}$ s.t.

$$
\sigma^{\prime}=\sigma_{1}\left(v_{1}, \tau\right) \sigma_{2}\left(v_{2}, \tau\right) \ldots \sigma_{\ell}\left(v_{\ell}, \tau\right) \sigma_{\ell+1} \sigma_{\ell+1}^{a b} \ldots \sigma_{k} \sigma_{k}^{a b}
$$

Where:

1. σ_{i} is a covering sequence in $\left(\left\{v_{i}\right\} \times T_{e l}\right)^{*}$
2. $k \leq 3 n$

Sketch of proof

Assume $s_{0} \xrightarrow{\sigma} s \succeq s_{f}$.
There exists $s_{0} \xrightarrow{\sigma^{\prime}} s^{\prime} \succeq s_{f}$ s.t.

$$
\sigma^{\prime}=\sigma_{1}\left(v_{1}, \tau\right) \sigma_{2}\left(v_{2}, \tau\right) \ldots \sigma_{\ell}\left(v_{\ell}, \tau\right) \sigma_{\ell+1} \sigma_{\ell+1}^{a b} \ldots \sigma_{k} \sigma_{k}^{a b}
$$

Where:

1. σ_{i} is a covering sequence in $\left(\left\{v_{i}\right\} \times T_{e l}\right)^{*}$
2. $k \leq 3 n$
3. $\sum_{i \leq k}\left|\sigma_{k}^{a b}\right| \leq 3 n$

Sketch of proof

Assume $s_{0} \xrightarrow{\sigma} s \succeq s_{f}$.
There exists $s_{0} \xrightarrow{\sigma^{\prime}} s^{\prime} \succeq s_{f}$ s.t.

$$
\sigma^{\prime}=\sigma_{1}\left(v_{1}, \tau\right) \sigma_{2}\left(v_{2}, \tau\right) \ldots \sigma_{\ell}\left(v_{\ell}, \tau\right) \sigma_{\ell+1} \sigma_{\ell+1}^{a b} \ldots \sigma_{k} \sigma_{k}^{a b}
$$

Where:

1. σ_{i} is a covering sequence in $\left(\left\{v_{i}\right\} \times T_{e l}\right)^{*}$
2. $k \leq 3 n$
3. $\sum_{i \leq k}\left|\sigma_{k}^{a b}\right| \leq 3 n$

Applying Rackoff's proposition to each σ_{i}, we get $s_{0} \xrightarrow{\sigma^{\prime \prime}} s^{\prime \prime} \succeq s_{f}$, s.t. $\left|\sigma^{\prime \prime}\right| \leq 2^{2^{c n \log n}}$.

Termination

Termination

Given an RPN and s_{0} a state.

Termination

Given an RPN and s_{0} a state.

$$
\exists\left(v_{i}, t_{i}\right)_{i=0}^{\infty} s_{0} \xrightarrow{\left(v_{0}, t_{0}\right)} s_{1} \xrightarrow{\left(v_{1}, t_{1}\right)} \ldots ?
$$

Termination

Given an RPN and s_{0} a state.

$$
\exists\left(v_{i}, t_{i}\right)_{i=0}^{\infty} s_{0} \xrightarrow{\left(v_{0}, t_{0}\right)} s_{1} \xrightarrow{\left(v_{1}, t_{1}\right)} \ldots ?
$$

Theorem. The termination problem for RPN is EXPSPACE-complete.

Termination

Given an RPN and s_{0} a state.

$$
\exists\left(v_{i}, t_{i}\right)_{i=0}^{\infty} s_{0} \xrightarrow{\left(v_{0}, t_{0}\right)} s_{1} \xrightarrow{\left(v_{1}, t_{1}\right)} \ldots ?
$$

Theorem. The termination problem for RPN is EXPSPACE-complete. Sketch of proof.

Termination

Given an RPN and s_{0} a state.

$$
\exists\left(v_{i}, t_{i}\right)_{i=0}^{\infty} s_{0} \xrightarrow{\left(v_{0}, t_{0}\right)} s_{1} \xrightarrow{\left(v_{1}, t_{1}\right)} \ldots ?
$$

Theorem. The termination problem for RPN is EXPSPACE-complete. Sketch of proof. Two types of infinite sequences:

Termination

Given an RPN and s_{0} a state.

$$
\exists\left(v_{i}, t_{i}\right)_{i=0}^{\infty} s_{0} \xrightarrow{\left(v_{0}, t_{0}\right)} s_{1} \xrightarrow{\left(v_{1}, t_{1}\right)} \ldots ?
$$

Theorem. The termination problem for RPN is EXPSPACE-complete. Sketch of proof. Two types of infinite sequences:

- Deep : along states with unbounded depth.

Termination

Given an RPN and s_{0} a state.

$$
\exists\left(v_{i}, t_{i}\right)_{i=0}^{\infty} s_{0} \xrightarrow{\left(v_{0}, t_{0}\right)} s_{1} \xrightarrow{\left(v_{1}, t_{1}\right)} \ldots ?
$$

Theorem. The termination problem for RPN is EXPSPACE-complete. Sketch of proof. Two types of infinite sequences:

- Deep : along states with unbounded depth.

1. Build an abstract graph in EXPSPACE (using RPN Coverability).

Termination

Given an RPN and s_{0} a state.

$$
\exists\left(v_{i}, t_{i}\right)_{i=0}^{\infty} s_{0} \xrightarrow{\left(v_{0}, t_{0}\right)} s_{1} \xrightarrow{\left(v_{1}, t_{1}\right)} \ldots ?
$$

Theorem. The termination problem for RPN is EXPSPACE-complete. Sketch of proof. Two types of infinite sequences:

- Deep : along states with unbounded depth.

1. Build an abstract graph in EXPSPACE (using RPN Coverability).
2. Check for a deep sequence in linear time.

Termination

Given an RPN and s_{0} a state.

$$
\exists\left(v_{i}, t_{i}\right)_{i=0}^{\infty} s_{0} \xrightarrow{\left(v_{0}, t_{0}\right)} s_{1} \xrightarrow{\left(v_{1}, t_{1}\right)} \ldots ?
$$

Theorem. The termination problem for RPN is EXPSPACE-complete. Sketch of proof. Two types of infinite sequences:

- Deep : along states with unbounded depth.

1. Build an abstract graph in EXPSPACE (using RPN Coverability).
2. Check for a deep sequence in linear time.

- Shallow : along states with bounded depth.

Termination

Given an RPN and s_{0} a state.

$$
\exists\left(v_{i}, t_{i}\right)_{i=0}^{\infty} s_{0} \xrightarrow{\left(v_{0}, t_{0}\right)} s_{1} \xrightarrow{\left(v_{1}, t_{1}\right)} \ldots ?
$$

Theorem. The termination problem for RPN is EXPSPACE-complete. Sketch of proof. Two types of infinite sequences:

- Deep : along states with unbounded depth.

1. Build an abstract graph in EXPSPACE (using RPN Coverability).
2. Check for a deep sequence in linear time.

- Shallow : along states with bounded depth. Reduced to small number of PN termination problems.

Outline

1. Introduction

2. Recursive Petri nets

3. Expressiveness and order
3.1 Order
3.2 Language
4. Complexity
4.1 Coverability
4.2 Termination
5. Conclusion and perspectives

Contributions

Contributions

- Expressiveness:

Contributions

- Expressiveness:
- Cov-PNL + CFL $\subsetneq \operatorname{Cov}-R P N L$

Contributions

- Expressiveness:
- Cov-PNL + CFL \subsetneq Cov-RPNL
- Cov-RPNL \nsubseteq Reach-PNL \nsubseteq Cov-RPNL

Contributions

- Expressiveness:
- Cov-PNL + CFL \subsetneq Cov-RPNL
- Cov-RPNL \nsubseteq Reach-PNL \nsubseteq Cov-RPNL
- $\forall \mathscr{L} \in R E \exists L \in \operatorname{Cov}-R P N L, R \in R L$ and h, s.t. $\mathscr{L}=h(L \cap R)$

Contributions

- Expressiveness:
- Cov-PNL + CFL \subsetneq Cov-RPNL
- Cov-RPNL \nsubseteq Reach-PNL \nsubseteq Cov-RPNL
- $\forall \mathscr{L} \in R E \exists L \in \operatorname{Cov}-R P N L, R \in R L$ and h, s.t. $\mathscr{L}=h(L \cap R)$
- Complexity: Coverability and termination problems are EXPSPACE-complete.

Future works

- $w \in \operatorname{Cov}-R P N L ?$

Future works

- $w \in \operatorname{Cov}-R P N L ?$
- Complexity: Boundedness and Finiteness problems?

Future works

- $w \in \operatorname{Cov}-R P N L ?$
- Complexity: Boundedness and Finiteness problems?

Future works

- $w \in \operatorname{Cov}-R P N L$?
- Complexity: Boundedness and Finiteness problems?

Future works

- $w \in \operatorname{Cov}-R P N L ?$
- Complexity: Boundedness and Finiteness problems?
- Cov-RPNL \subseteq Reach-RPNL?

Questions?

	PN+Stack	BVASS	RPN
Reachability	TOWER-hard	TOWER-hard	Decidable
Coverability	TOWER-hard	2-EXPTIME-complete	EXPSPACE-complete
Boundedness	Decidable	2-EXPTIME-complete	$?$
Termination	Decidable	$?$	EXPSPACE-complete

Bibliography

[EH96] Amal E, Seghrouchni and Serge Haddad, A recursive model for distributed planning, ICMAS 1996, Kyoto, Japan, 1996, pp. 307-314.
[Rac78] Charles Rackoff, The covering and boundedness problems for vector addition systems, Theoretical Computer Science 6 (1978), no. 2, 223-231.

Fault tolerant system

$$
\mathscr{F}=\left\{p_{\text {fault }}\right\}
$$

