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From Petri Net to Recursive Petri Net
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Firing in an RPN

Three types of transitions:

1. Elementary transition
2. Abstract transition
3. Cut transition

A firing sequence:

(v,t1) (va,t2) (Vn,tn)
So— S —> " *Sp—1—5p

Or equivalently s = sy for o = (vq, t1)(va, t2) ... (v, tn).
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Complexity 1. Coverability problem?

2. Termination problem?

10/26



Outline

3. Expressiveness and order
3.1 Order
3.2 Language
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RPN coverability languages

L(N.50,5) ={0) | Tso—>s=s AsES}

A -RPN

So - initial state

S¢ - finite set of states

e A:T* = X* - morphism function.
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Comparison
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4. Complexity
4.1 Coverability
4.2 Termination
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Coverability problem - RPN

Given an RPN and sg, sf two states.
do so s =57

Proposition:
So Zs> Sf
J
/ o
d0'st. sp— 5" = ¢

with |o’| < 227",

From this proposition and Savitch’s theorem, the coverability
problem of RPN is EXPSPACE-complete.
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Coverability problem - PN

Given an PN and mg, ms two markings.
30 mo — m = me?

Proposition:
mgo Zmx= mg
Y
U/
Ao’ st. mg— m’ = mg

with |o’] < 227",

From this proposition and Savitch’s theorem, the coverability
problem of PN is EXPSPACE-complete.

18/26



Sketch of proof

19/26



Sketch of proof

g
Assume so — S = St.

19/26



Sketch of proof

o
Assume so — S = St.

. o’
There exists s — s’ > ¢ s.t.

19/26



Sketch of proof

o
Assume so — S = St.

. o’
There exists s — s’ > ¢ s.t.

o’ = oy(vi, T)o2(va, 7). .. 0y (vy, T)O[+10?f_1 .

Where:

00,

ab

19/26



Sketch of proof

o
Assume so — S = St.

. o’
There exists s — s’ > ¢ s.t.

o’ = oi(vi, T)o2(va, 7). .. 0y(vy, T)O[+10?f_1 .

Where:

o; is a covering sequence in ({v;} x Tg)*

00,

ab
k

19/26



Sketch of proof

o
Assume so — S = St.

. o’
There exists s — s’ > ¢ s.t.

o’ = oy(vi, T)o2(va, 7). .. 0y (vy, T)O[+107f_1 .

Where:
o; is a covering sequence in ({v;} x Tg)*

k < 3n

0K0

ab
k

19/26



Sketch of proof

o
Assume so — S = St.

. o’
There exists s — s’ > ¢ s.t.

o’ = oy(vi, T)o2(va, 7). .. 0y (vy, T)o[+107f1 .

Where:
o; is a covering sequence in ({v;} x Tg)*
k< 3n
> i<k lof®] < 3n

00

ab
k

19/26



Sketch of proof

o
Assume so — S = St.

. o’
There exists s — s’ > ¢ s.t.

o' = o1(v1, T)o2(v2, 7). .. 04 (v, T)Op4107] ab
Where:

+17

o; is a covering sequence in ({v;} x Tg)*
k < 3n
> i<k lof®] < 3n

Applying Rackof‘f s proposition to each oj,
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Termination

Given an RPN and sg a state.

(vo.to) (v1,t1)
Avi, t)2, Sso——= 51— ...

Theorem. The termination problem for RPN is EXPSPACE-complete.
Sketch of proof. Two types of infinite sequences:

Deep : along states with unbounded depth.

Build an abstract graph in EXPSPACE (using RPN Coverability).
Check for a deep sequence in linear time.

Shallow : along states with bounded depth.
Reduced to small number of PN termination problems.
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Cov-PNL + CFL ¢ Cov-RPNL
Cov-RPNL € Reach-PNL € Cov-RPNL
V¥ €REIL € Cov-RPNL,R€ RLand h,s.t. £ =h(LNR)

Complexity: Coverability and termination problems are
EXPSPACE-complete.
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Questions?

PN+Stack BVASS RPN
Reachability TOWER-hard TOWER-hard Decidable
Coverability TOWER-hard | 2-EXPTIME-complete | EXPSPACE-complete
Boundedness Decidable 2-EXPTIME-complete ?
Termination Decidable ? EXPSPACE-complete
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Fault tolerant system

Dstart Pfault Pinit

tstart ,E trepair teount
Pinit + Prault

O

Prepair Pcount
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