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Firing in an RPN
Three types of transitions:

1. Elementary transition
2. Abstract transition
3. Cut transition

A firing sequence:

s0
(v1,t1)−−→ s1

(v2,t2)−−−→ · · · sn−1
(vn,tn)−−−→ sn

Or equivalently s0
σ−→ sn for σ = (v1, t1)(v2, t2) . . . (vn, tn).
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RPN coverability languages

L (N , s0, Sf) = {λ(σ) | ∃ s0
σ−→ s � sf ∧ sf ∈ Sf}

• N - RPN

• s0 - initial state

• Sf - finite set of states

• λ : T∗ → ∗ - morphism function.
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Coverability problem - RPN
Given an RPN and s0, sf two states.

∃σ s0
σ−→ s � sf ?

Proposition:
s0

σ−→ s � sf
⇓

∃σ′ s.t. s0
σ′−→ s′ � sf

with |σ′| ≤ 22cn log n .

From this proposition and Savitch’s theorem, the coverability
problem of RPN is EXPSPACE-complete.
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Coverability problem - PN
Given an PN andm0,mf two markings.

∃σ m0
σ−→ m � mf ?

Proposition:[Rac78]
m0

σ−→ m � mf

⇓

∃σ′ s.t. m0
σ′−→ m′ � mf

with |σ′| ≤ 22cn log n .

From this proposition and Savitch’s theorem, the coverability
problem of PN is EXPSPACE-complete.
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Sketch of proof

Assume s0
σ−→ s � sf .

There exists s0
σ′−→ s′ � sf s.t.

Where:

1. σi is a covering sequence in ({vi} × Tel)∗

2. k ≤ 3n

3.
∑︀

i≤k |σabk | ≤ 3n

Applying Rackoff’s proposition to each σi,

we get s0
σ′′−→ s′′ � sf , s.t. |σ′′| ≤ 22cn log n .
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Termination

Given an RPN and s0 a state.

∃(vi, ti)∞i=0 s0
(v0,t0)−−−→ s1

(v1,t1)−−→ . . . ?

Theorem. The termination problem for RPN is EXPSPACE-complete.
Sketch of proof. Two types of infinite sequences:

• Deep : along states with unbounded depth.

1. Build an abstract graph in EXPSPACE (using RPN Coverability).
2. Check for a deep sequence in linear time.

• Shallow : along states with bounded depth.
Reduced to small number of PN termination problems.
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Contributions

• Expressiveness:

– Cov-PNL+ CFL ( Cov-RPNL
– Cov-RPNL 6⊆ Reach-PNL 6⊆ Cov-RPNL
– ∀L ∈ RE ∃L ∈ Cov-RPNL, R ∈ RL and h, s.t.L = h(L ∩ R)

• Complexity: Coverability and termination problems are
EXPSPACE-complete.
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Future works

• w ∈ Cov-RPNL?

• Complexity: Boundedness and Finiteness problems?

• Cov-RPNL ⊆ Reach-RPNL?

Reach-PNL CFLCov-PNL

Cov-RPNL
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Questions?

PN+Stack BVASS RPN

Reachability TOWER-hard TOWER-hard Decidable
Coverability TOWER-hard 2-EXPTIME-complete EXPSPACE-complete
Boundedness Decidable 2-EXPTIME-complete ?
Termination Decidable ? EXPSPACE-complete
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Fault tolerant system

pstart

prepair

pfault pinit

pcount

trepairtstart
pinit + pfault

tcount

F = {pfault}
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